Search Results

Now showing 1 - 8 of 8
  • Item
    Microwave plasma discharges for biomass pretreatment: Degradation of a sodium carboxymethyl cellulose model
    (New York, NY : American Inst. of Physics, 2020) Honnorat, B.; Brüser, V.; Kolb, J.F.
    Biogas production is an important component of an environmentally benign renewable energy strategy. However, the cost-effectiveness of biogas production from biomass is limited by the presence of polymeric structures, which are recalcitrant to digestion by bacteria. Therefore, pretreatments must often be applied prior to anaerobic fermentation to increase yields of biogas. Many physico-chemical pretreatments have a high energy demand and are generally costly. An alternative could be the ignition of a plasma directly in the biomass substrate. The reactive species that are generated by plasma-liquid interactions, such as hydroxyl radicals and hydrogen peroxides, could contribute significantly to the disintegration of cell walls and the breakage of poorly digestible polymers. With respect to economic, processing, and other potential benefits, a microwave instigated and sustained plasma was investigated. A microwave circuit transmitted 2-kW pulses into a recirculated sodium carboxymethyl cellulose solution, which mimicked the rheological properties of biomass. Each microwave pulse had a duration of 12.5 ms and caused the ignition of a discharge after a vapor bubble had formed. Microwaves were absorbed in the process with an efficiency of ∼97%. Slow-motion imaging showed the development of the discharge. The plasma discharges provoked a decrease in the viscosity, probably caused by the shortening of polymer chains of the cellulose derivative. The decrease in viscosity by itself could reduce processing costs and promotes bacterial activity in actual biomass. The results demonstrate the potential of microwave in-liquid plasma discharges for the pretreatment of biomass. © 2020 Author(s).
  • Item
    Formaldehyde-free curing of cotton cellulose fabrics in anhydrous media
    (New York, NY : Wiley, 2020) Mommer, Stefan; Kurniadi, Juliana; Keul, Helmut; Möller, Martin
    The effect of formaldehyde-free curing on standard cotton cellulose fabrics in anhydrous media is studied. Different crosslinkers are applied via (1) a pad-cure-dry process (solid/liquid) and (2) in a vapor chamber (solid/gas). The performance of each crosslinker and set of conditions is assessed by measuring dry crease recovery angles, DCRAs. We find that in control samples (treatment without crosslinker) the DCRAs are altered depending on the solvent. Using DMF, carbonyldiimidazole shows the best DCRA (160.1°, 15° higher than the non-treated fabrics). In ethyl acetate, triglycidyl isocyanurate shows the highest DCRA (22° higher than the control). The most promising crosslinkers are applied with selected catalysts known from literature. Here, trigycidyl isocyanurate in combination with the superbase P4-t-Bu gives the best DCRA (35° higher than the control). Using the vapor-chemical finishing, divinylsulfone as crosslinker increases the DCRA to 162.7° (18° higher than non-treated fabrics). Hence, cotton cellulose fabrics can be successfully finished in anhydrous conditions. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48371. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc.
  • Item
    A block copolymer templated approach for the preparation of nanoporous polymer structures and cellulose fiber hybrids by ozone treatment
    (Cambridge : RSC Publ., 2022) Gemmer, Lea; Hu, Qiwei; Niebuur, Bart-Jan; Kraus, Tobias; Balzer, Bizan N.; Gallei, Markus
    Functional amphiphilic block copolymers (BCPs) are versatile, smart, and promising materials that are often used as soft templates in nanoscience. BCPs generally feature the capability of microphase-separation leading to various interesting morphologies at the nanometer length scale. Materials derived from BCPs can be converted into porous structures while retaining the underlying morphology of the matrix material. Here, a convenient and scalable approach for the fabrication of porous functional polyvinylpyridines (P2VP) is introduced. The BCP polyisoprene-block-P2VP (PI-b-P2VP) is obtained via sequential anionic polymerization of the respective monomers and used to form either BCP films in the bulk state or a soft template in a composite with cellulose fibers. Cross-linking of the BCPs with 1,4-diiodobutane is conducted and subsequently PI domains are selectively degraded inside the materials using ozone, while preserving the porous and tailor-made P2VP nanostructure. Insights into the feasibility of the herein presented strategy is supported by various polymer characterization methods comprising nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). The resulting bulk- and composite materials are investigated regarding their morphology and pore formation by scanning electron microscopy (SEM), atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS). Furthermore, chemical conversions were examined by energy dispersive X-ray spectroscopy (EDS), attenuated total reflection Fourier-transformation infrared spectroscopy (ATR-FTIR) and water contact angle (WCA) measurements. By this convenient strategy the fabrication of functional porous P2VP in the bulk state and also within sustainable cellulose composite materials is shown, paving the synthetic strategy for the generation of a new family of stimuli-responsive sustainable materials.
  • Item
    Aerogels based on reduced graphene oxide/cellulose composites: Preparation and vapour sensing abilities
    (Basel : MDPI, 2020) Chen, Yian; Pötschke, Petra; Pionteck, Jürgen; Voit, Brigitte; Qi, Haisong
    This paper reports on the preparation of cellulose/reduced graphene oxide (rGO) aerogels for use as chemical vapour sensors. Cellulose/rGO composite aerogels were prepared by dissolving cellulose and dispersing graphene oxide (GO) in aqueous NaOH/urea solution, followed by an in-situ reduction of GO to reduced GO (rGO) and lyophilisation. The vapour sensing properties of cellulose/rGO composite aerogels were investigated by measuring the change in electrical resistance during cyclic exposure to vapours with varying solubility parameters, namely water, methanol, ethanol, acetone, toluene, tetrahydrofuran (THF), and chloroform. The increase in resistance of aerogels on exposure to vapours is in the range of 7 to 40% with methanol giving the highest response. The sensing signal increases almost linearly with the vapour concentration, as tested for methanol. The resistance changes are caused by the destruction of the conductive filler network due to a combination of swelling of the cellulose matrix and adsorption of vapour molecules on the filler surfaces. This combined mechanism leads to an increased sensing response with increasing conductive filler content. Overall, fast reaction, good reproducibility, high sensitivity, and good differentiation ability between different vapours characterize the detection behaviour of the aerogels. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Direct catalytic conversion of cellulose to liquid straight-chain alkanes
    (Cambridge : Royal Society of Chemistry, 2014) Op de Beeck, Beau; Dusselier, Michiel; Geboers, Jan; Holsbeek, Jensen; Morré, Eline; Oswald, Steffen; Giebeler, Lars; Sels, Bert F.
    High yields of liquid straight-chain alkanes were obtained directly from cellulosic feedstock in a one-pot biphasic catalytic system. The catalytic reaction proceeds at elevated temperatures under hydrogen pressure in the presence of tungstosilicic acid, dissolved in the aqueous phase, and modified Ru/C, suspended in the organic phase. Tungstosilicic acid is primarily responsible for cellulose hydrolysis and dehydration steps, while the modified Ru/C selectively hydrogenates intermediates en route to the liquid alkanes. Under optimal conditions, microcrystalline cellulose is converted to 82% n-decane-soluble products, mainly n-hexane, within a few hours, with a minimum formation of gaseous and char products. The dominant route to the liquid alkanes proceeds via 5-hydroxymethylfurfural (HMF), whereas the more common pathway via sorbitol appears to be less efficient. High liquid alkane yields were possible through (i) selective conversion of cellulose to glucose and further to HMF by gradually heating the reactor, (ii) a proper hydrothermal modification of commercial Ru/C to tune its chemoselectivity to furan hydrogenation rather than glucose hydrogenation, and (iii) the use of a biphasic reaction system with optimal partitioning of the intermediates and catalytic reactions. The catalytic system is capable of converting subsequent batches of fresh cellulose, enabling accumulation of the liquid alkanes in the organic phase during subsequent runs. Its robustness is illustrated in the conversion of the raw (soft)wood sawdust.
  • Item
    Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials
    (Amsterdam [u.a.] : Elsevier, 2018) Gnanaseelan, Minoj; Chen, Yian; Luo, Jinji; Krause, Beate; Pionteck, Jürgen; Pötschke, Petra; Qu, Haisong
    Thermoelectric materials based on cellulose/carbon nanotube (CNT) nanocomposites have been developed by a facile approach and the effects of amount (2–10 wt%) and types of CNTs (single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs)) on the morphology (films and aerogels) and the thermoelectric properties of the nanocomposites have been investigated. Composite films based on SWCNTs showed significantly higher electrical conductivity (5 S/cm at 10 wt%) and Seebeck coefficient (47.2 μV/K at 10 wt%) compared to those based on MWCNTs (0.9 S/cm and 11 μV/K, respectively). Lyophilization, leading to development of aerogels with sub-micron sized pores, decreased the electrical conductivity for both types by one order of magnitude, but did not affect the Seebeck coefficient of MWCNT based nanocomposites. For SWCNT containing aerogels, higher Seebeck coefficients than for films were measured at 3 and 4 wt% but significantly lower values at higher loadings. CNT addition increased the thermal conductivity from 0.06 to 0.12 W/(m∙K) in the films, whereas the lyophilization significantly reduced it towards values between 0.01 and 0.09 W/(m∙K) for the aerogels. The maximum Seebeck coefficient, power factor, and ZT observed in this study are 49 μV/K for aerogels with 3 wt% SWCNTs, 1.1 μW/(m∙K2) for composite films with 10 wt% SWCNTs, and 7.4 × 10−4 for films with 8 wt% SWCNTs, respectively.
  • Item
    Kinetic investigation of para-nitrophenol reduction with photodeposited platinum nanoparticles onto tunicate cellulose
    (London : RSC Publishing, 2022) Thiel, T.A.; Zhang, X.; Radhakrishnan, B.; van de Krol, R.; Abdi, F.F.; Schroeter, M.; Schomäcker, R.; Schwarze, M.
    Photodeposition is a specific method for depositing metallic co-catalysts onto photocatalysts and was applied for immobilizing platinum nanoparticles onto cellulose, a photocatalytically inactive biopolymer. The obtained Pt@cellulose catalysts show narrow and well-dispersed nanoparticles with average sizes between 2 and 5 nm, whereby loading, size and distribution depend on the preparation conditions. The catalysts were investigated for the hydrogenation of para-nitrophenol via transfer hydrogenation using sodium borohydride as the hydrogen source, and the reaction rate constant was determined using the pseudo-first-order reaction rate law. The Pt@cellulose catalysts are catalytically active with rate constant values k from 0.09 × 10−3 to 0.43 × 10−3 min−1, which were higher than the rate constant of a commercial Pt@Al2O3 catalyst (k = 0.09 × 10−3 min−1). Additionally, the Pt@cellulose catalyst can be used for electrochemical hydrogenation of para-nitrophenol where the hydrogen is electrocatalytically formed. The electrochemical hydrogenation is faster compared to the transfer hydrogenation (k = 0.11 min−1).
  • Item
    Polyelectrolyte complex nanoparticles of poly(ethyleneimine) and poly(acrylic acid): Preparation and applications
    (Basel : MDPI AG, 2011) Müller, M.; Keßler, B.; Fröhlich, J.; Poeschla, S.; Torger, B.
    In this contribution we outline polyelectrolyte (PEL) complex (PEC) nanoparticles, prepared by mixing solutions of the low cost PEL components poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAC). It was found, that the size and internal structure of PEI/PAC particles can be regulated by process, media and structural parameters. Especially, mixing order, mixing ratio, PEL concentration, pH and molecular weight, were found to be sensible parameters to regulate the size (diameter) of spherical PEI/PAC nanoparticles, in the range between 80-1,000 nm, in a defined way. Finally, applications of dispersed PEI/PAC particles as additives for the paper making process, as well as for drug delivery, are outlined. PEI/PAC nanoparticles mixed directly on model cellulose film showed a higher adsorption level applying the mixing order 1. PAC 2. PEI compared to 1. PEI 2. PAC. Surface bound PEI/PAC nanoparticles were found to release a model drug compound and to stay immobilized due to the contact with the aqueous release medium.