Search Results

Now showing 1 - 2 of 2
  • Item
    Possible experimental realization of a basic Z 2 topological semimetal in GaGeTe
    (College Park, MD : American Institute of Physics, 2019) Haubold, E.; Fedorov, A.; Pielnhofer, F.; Rusinov, I.P.; Menshchikova, T.V.; Duppel, V.; Friedrich, D.; Weihrich, R.; Pfitzner, A.; Zeugner, A.; Isaeva, A.; Thirupathaiah, S.; Kushnirenko, Y.; Rienks, E.; Kim, T.; Chulkov, E.V.; Büchner, B.; Borisenko, S.
    We report experimental and theoretical evidence that GaGeTe is a basic Z2 topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the classic 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion at the T-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron and holelike carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the material's application potential.
  • Item
    Evidence for “dark charge” from photoluminescence measurements in wide InGaN quantum wells
    (Washington, DC : Optical Society of America, OSA, 2023) Bercha, A.; Trzeciakowski, W.; Muziol, G.; Tomm, J. W.; Suski, T.
    Wide (15-25 nm) InGaN/GaN quantum wells in LED structures were studied by time-resolved photoluminescence (PL) spectroscopy and compared with narrow (2.6 nm) wells in similar LED structures. Using below-barrier pulsed excitation in the microsecond range, we measured increase and decay of PL pulses. These pulses in wide wells at low-intensity excitation show very slow increase and fast decay. Moreover, the shape of the pulses changes when we vary the separation between them. None of these effects occurs for samples with narrow wells. The unusual properties of wide wells are attributed to the presence of “dark charge” i.e., electrons and holes in the ground states. Their wave functions are spatially separated and due to negligible overlap they do not contribute to emission. However, they screen the built-in field in the well very effectively so that excited states appear with significant overlap and give rise to PL. A simple model of recombination kinetics including “dark charge” explains the observations qualitatively.