Search Results

Now showing 1 - 2 of 2
  • Item
    Switchable double-sided micropatterned adhesives for selective fixation and detachment
    (Amsterdam : Elsevier, 2019) Tinnemann, V.; Arzt, E.; Hensel, R.
    Micropatterned dry adhesives are promising candidates for the development of innovative adhesive platforms. Their reversible adhesion to various materials and surfaces has been reported over more than a decade. Switching between a strong and a weak adhesive state can be introduced by elastic buckling instabilities of the microstructure. In this work, we report on novel adhesive pads that exhibit micropatterned pillars on both sides. In double-sided PDMS micropatterns, the dimensions of the pillar structures were tuned by modulating the critical force for buckling during compressive loading. In this way, selective detachment of glass substrates was induced from one side of the pad. Our results indicate a significant switching efficiency of up to 83% between the strong and weak adhesive state. The new structures have high potential for emerging applications where temporary, double-sided fixations in combination with a predetermined detachment location are required. © 2018
  • Item
    Direct observation of modal hybridization in nanofluidic fiber [Invited]
    (Washington, DC : OSA, 2021) Gomes, André D.; Zhao, Jiangbo Tim; Tuniz, Alessandro; Schmidt, Markus A.
    Hybrid-material optical fibers enhance the capabilities of fiber-optics technologies, extending current functionalities to several emerging application areas. Such platforms rely on the integration of novel materials into the fiber core or cladding, thereby supporting hybrid modes with new characteristics. Here we present experiments that reveal hybrid mode interactions within a doped-core silica fiber containing a central high-index nanofluidic channel. Compared with a standard liquid-filled capillary, calculations predict modes with unique properties emerging as a result of the doped core/cladding interface, possessing a high power fraction inside and outside the nanofluidic channel. Our experiments directly reveal the beating pattern in the fluorescent liquid resulting from the excitation of the first two linearly polarized hybrid modes in this system, being in excellent agreement with theoretical predictions. The efficient excitation and beat of such modes in such an off-resonance situation distinguishes our device from regular directional mode couplers and can benefit applications that demand strong coupling between fundamental- and higher-order- modes, e.g. intermodal third-harmonic generation, bidirectional coupling, and nanofluidic sensing.