Search Results

Now showing 1 - 4 of 4
  • Item
    An electronic analog of synthetic genetic networks
    (San Francisco, CA : Public Library of Science (PLoS), 2011) Hellen, E.H.; Volkov, E.; Kurths, J.; Dana, S.K.
    An electronic analog of a synthetic genetic network known as the repressilator is proposed. The repressilator is a synthetic biological clock consisting of a cyclic inhibitory network of three negative regulatory genes which produces oscillations in the expressed protein concentrations. Compared to previous circuit analogs of the repressilator, the circuit here takes into account more accurately the kinetics of gene expression, inhibition, and protein degradation. A good agreement between circuit measurements and numerical prediction is observed. The circuit allows for easy control of the kinetic parameters thereby aiding investigations of large varieties of potential dynamics.
  • Item
    Noise-Aided Logic in an Electronic Analog of Synthetic Genetic Networks
    (San Francisco, CA : Public Library of Science (PLoS), 2013) Hellen, E.H.; Dana, S.K.; Kurths, J.; Kehler, E.; Sinha, S.
    We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logic.
  • Item
    Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation
    (San Francisco, CA : Public Library of Science (PLoS), 2013) Winck, F.V.; Arvidsson, S.; Riaño-Pachón, D.M.; Hempe, S.; Koseska, A.; Nikoloski, Z.; Gomez, D.A.U.; Rupprecht, J.; Mueller-Roeber, B.
    The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO 2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2 ), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas.
  • Item
    Systems Medicine of Cancer: Bringing Together Clinical Data and Nonlinear Dynamics of Genetic Networks
    (London : Hindawi, 2016) Blyuss, Konstantin B.; Manchanda, Ranjit; Kurths, Jürgen; Alsaedi, Ahmed; Zaikin, Alexey
    Editorial