Search Results

Now showing 1 - 7 of 7
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    Two-dimensional electron gas of the In2O3 surface: Enhanced thermopower, electrical transport properties, and reduction by adsorbates or compensating acceptor doping
    (Woodbury, NY : Inst., 2020) Papadogianni, Alexandra; Rombach, Julius; Berthold, Theresa; Polyakov, Vladimir; Krischok, Stefan; Himmerlich, Marcel; Bierwagen, Oliver
    In2O3 is an n-type transparent semiconducting oxide possessing a surface electron accumulation layer (SEAL) like several other relevant semiconductors, such as InAs, InN, SnO2, and ZnO. Even though the SEAL is within the core of the application of In2O3 in conductometric gas sensors, a consistent set of transport properties of this two-dimensional electron gas (2DEG) is missing in the present literature. To this end, we investigate high-quality single-crystalline as well as textured doped and undoped In2O3(111) films grown by plasma-assisted molecular beam epitaxy to extract transport properties of the SEAL by means of Hall effect measurements at room temperature while controlling the oxygen adsorbate coverage via illumination. The resulting sheet electron concentration and mobility of the SEAL are ≈1.5×1013cm−2 and ≈150cm2/Vs, respectively, both of which are strongly reduced by oxygen-related surface adsorbates from the ambient air. Our transport measurements further demonstrate a systematic reduction of the SEAL by doping In2O3 with the deep compensating bulk acceptors Ni or Mg. This finding is supported by x-ray photoelectron spectroscopy (XPS) measurements of the surface band bending and SEAL electron emission. Quantitative analyses of these XPS results using self-consistent, coupled Schrödinger-Poisson calculations indicate the simultaneous formation of compensating bulk donor defects (likely oxygen vacancies), which almost completely compensate the bulk acceptors. Finally, an enhancement of the thermopower by reduced dimensionality is demonstrated in In2O3: Seebeck coefficient measurements of the surface 2DEG with partially reduced sheet electron concentrations between 3×1012 and 7×1012cm−2 (corresponding average volume electron concentration between 1×1019 and 2.3×1019cm−3) indicate a value enhanced by ≈80% compared to that of bulk Sn-doped In2O3 with comparable volume electron concentration.
  • Item
    From Colossal to Zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design
    (College Park, MD : American Physical Society, 2018) Manna, K.; Muechler, L.; Kao, T.-H.; Stinshoff, R.; Zhang, Y.; Gooth, J.; Kumar, N.; Kreiner, G.; Koepernik, K.; Car, R.; Kübler, J.; Fecher, G.H.; Shekhar, C.; Sun, Y.; Felser, C.
    Since the discovery of the anomalous Hall effect (AHE), the anomalous Hall conductivity (AHC) has been thought to be zero when there is no net magnetization. However, the recently found relation between the intrinsic AHE and the Berry curvature predicts other possibilities, such as a large AHC in noncolinear antiferromagnets with no net magnetization but net Berry curvature. Vice versa, the AHE in principle could be tuned to zero, irrespective of a finite magnetization. Here, we experimentally investigate this possibility and demonstrate that the symmetry elements of Heusler magnets can be changed such that the Berry curvature and all the associated properties are switched while leaving the magnetization unaffected. This enables us to tune the AHC from 0 Ω-1 cm-1 up to 1600 Ω-1 cm-1 with an exceptionally high anomalous Hall angle up to 12%, while keeping the magnetization the same. Our study shows that the AHC can be controlled by selectively changing the Berry curvature distribution, independent of the magnetization.
  • Item
    Experimental Hall electron mobility of bulk single crystals of transparent semiconducting oxides
    (Cambridge [u.a.] : Cambridge Univ. Press, 2021) Galazka, Zbigniew; Irmscher, Klaus; Pietsch, Mike; Ganschow, Steffen; Schulz, Detlev; Klimm, Detlef; Hanke, Isabelle M.; Schroeder, Thomas; Bickermann, Matthias
    We provide a comparative study of basic electrical properties of bulk single crystals of transparent semiconducting oxides (TSOs) obtained directly from the melt (9 compounds) and from the gas phase (1 compound), including binary (β-Ga2O3, In2O3, ZnO, SnO2), ternary (ZnSnO3, BaSnO3, MgGa2O4, ZnGa2O4), and quaternary (Zn1−xMgxGa2O4, InGaZnO4) systems. Experimental outcome, covering over 200 samples measured at room temperature, revealed n-type conductivity of all TSOs with free electron concentrations (ne) between 5 × 1015 and 5 × 1020 cm−3 and Hall electron mobilities (μH) up to 240 cm2 V−1 s−1. The widest range of ne values was achieved for β-Ga2O3 and In2O3. The most electrically conducting bulk crystals are InGaZnO4 and ZnSnO3 with ne > 1020 cm−3 and μH > 100 cm2 V−1 s−1. The highest μH values > 200 cm2 V−1 s−1 were measured for SnO2, followed by BaSnO3 and In2O3 single crystals. In2O3, ZnO, ZnSnO3, and InGaZnO4 crystals were always conducting, while others could be turned into electrical insulators.
  • Item
    Shell models for Hall effect induced magnetic turbulence
    (College Park, MD : Institute of Physics Publishing, 2007) Frick, P.; Stepanov, R.; Rheinhardt, M.
    The Hall effect occurs in strongly magnetized conductive media and results in non-dissipative currents perpendicular to the electric field. We discuss its influence on the magnetic field dynamics ignoring fluid motion and ambipolar diffusion. The magnetic field evolution can then be basically similar to that of the velocity field in hydrodynamic turbulence resulting in a magnetic turbulence. Shell models for the induction equation with Hall effect are constructed on the basis of the conservation of magnetic energy and helicity in the dissipation-free limit. Numerical simulations of these models indicate that a magnetic energy cascade does occur, but the time behaviour and spatial spectrum of the magnetic field are very different from those of the velocity in shell models of hydrodynamic turbulence. ©IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Magnetic-field- and temperature-dependent fermi surface of CeBiPt
    (Milton Park : Taylor & Francis, 2006) Wosnitza, J.; Goll, G.; Bianchi, A.D.; Bergk, B.; Kozlova, N.; Opahle, I.; Elgazzar, S.; Richter, Manuel; Stockert, O.; Löhneysen, H.V.; Yoshino, T.; Takabatake, T.
    The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikov–de Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15 K. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25 T), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification.
  • Item
    Berry curvature associated to Fermi arcs in continuum and lattice Weyl systems
    (College Park, MD : APS, 2023) Wawrzik, Dennis; van den Brink, Jeroen
    Recently it has been discovered that in Weyl semimetals the surface state Berry curvature can diverge in certain regions of momentum. This occurs in a continuum description of tilted Weyl cones, which for a slab geometry results in the Berry curvature dipole associated to the surface Fermi arcs growing linearly with slab thickness. Here we investigate analytically incarnations of lattice Weyl semimetals and demonstrate this diverging surface Berry curvature by solving for their surface states and connect these to their continuum descriptions. We show how the shape of the Fermi arc and the Berry curvature hot-line is determined and confirm the 1/k2 divergence of the Berry curvature at the end of the Fermi arc as well as the finite-size effects for the Berry curvature and its dipole, using finite-slab calculations and surface Green's function methods. We further establish that apart from affecting the second-order, nonlinear Hall effect, the divergent Berry curvature has a strong impact on other transport phenomena as the Magnus-Hall effect and the nonlinear chiral anomaly.