Search Results

Now showing 1 - 5 of 5
  • Item
    Food security under high bioenergy demand toward long-term climate goals
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Hasegawa, Tomoko; Sands, Ronald D.; Brunelle, Thierry; Cui, Yiyun; Frank, Stefan; Fujimori, Shinichiro; Popp, Alexander
    Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person−1 day−1, leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production. © 2020, The Author(s).
  • Item
    Negative emissions and international climate goals—learning from and about mitigation scenarios
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Hilaire, Jérôme; Minx, Jan C.; Callaghan, Max W.; Edmonds, Jae; Luderer, Gunnar; Nemet, Gregory F.; Rogelj, Joeri; del Mar Zamora, Maria
    For aiming to keep global warming well-below 2 °C and pursue efforts to limit it to 1.5 °C, as set out in the Paris Agreement, a full-fledged assessment of negative emission technologies (NETs) that remove carbon dioxide from the atmosphere is crucial to inform science-based policy making. With the Paris Agreement in mind, we re-analyse available scenario evidence to understand the roles of NETs in 1.5 °C and 2 °C scenarios and, for the first time, link this to a systematic review of findings in the underlying literature. In line with previous research, we find that keeping warming below 1.5 °C requires a rapid large-scale deployment of NETs, while for 2 °C, we can still limit NET deployment substantially by ratcheting up near-term mitigation ambition. Most recent evidence stresses the importance of future socio-economic conditions in determining the flexibility of NET deployment and suggests opportunities for hedging technology risks by adopting portfolios of NETs. Importantly, our thematic review highlights that there is a much richer set of findings on NETs than commonly reflected upon both in scientific assessments and available reviews. In particular, beyond the common findings on NETs underpinned by dozens of studies around early scale-up, the changing shape of net emission pathways or greater flexibility in the timing of climate policies, there is a suite of “niche and emerging findings”, e.g. around innovation needs and rapid technological change, termination of NETs at the end of the twenty-first century or the impacts of climate change on the effectiveness of NETs that have not been widely appreciated. Future research needs to explore the role of climate damages on NET uptake, better understand the geophysical constraints of NET deployment (e.g. water, geological storage, climate feedbacks), and provide a more systematic assessment of NET portfolios in the context of sustainable development goals. © 2019, The Author(s).
  • Item
    Deep decarbonisation of buildings energy services through demand and supply transformations in a 1.5°C scenario
    (Bristol : IOP Publ., 2021-5-12) Levesque, Antoine; Pietzcker, Robert C.; Baumstark, Lavinia; Luderer, Gunnar
    Buildings energy consumption is one of the most important contributors to greenhouse gas (GHG) emissions worldwide, responsible for 23% of energy-related CO2 emissions. Decarbonising the energy demand of buildings will require two types of strategies: first, an overall reduction in energy demand, which could, to some extent, be achieved at negative costs; and second through a reduction of the carbon content of energy via fuel switching and supply-side decarbonisation. This study assesses the contributions of each of these strategies for the decarbonisation of the buildings sector in line with a 1.5°C global warming. We show that in a 1.5°C scenario combining mitigation policies and a reduction of market failures in efficiency markets, 81% of the reductions in buildings emissions are achieved through the reduction of the carbon content of energy, while the remaining 19% are due to efficiency improvements which reduce energy demand by 31%. Without supply-side decarbonisation, efficiency improvements almost entirely suppress the doubling of emissions that would otherwise be expected, but fail to induce an absolute decline in emissions. Our modelling and scenarios show the impact of both climate change mitigation policies and of the alleviation of market failures pervading through energy efficiency markets. The results show that the reduction of the carbon content of energy through fuel switching and supply-side decarbonisation is of paramount importance for the decarbonisation of buildings.
  • Item
    Mid-century emission pathways in Japan associated with the global 2 °C goal: national and globalmodels’ assessments based on carbon budgets
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Oshiro, Ken; Gi, Keii; Fujimori, Shinichiro; van Soest, Heleen L.; Bertram, Christoph; Després, Jacques; Masui, Toshihiko; Rochedo, Pedro; Roelfsema, Mark; Vrontisi, Zoi
    This study assesses Japan’s mid-century low-emission pathways using both national and global integrated assessment models in the common mitigation scenario framework, based on the carbon budgets corresponding to the global 2 °C goal. We examine high and low budgets, equal to global cumulative 1600 and 1000 Gt-CO2 (2011–2100) for global models, and 36 and 31 Gt-CO2 (2011–2050) in Japan for national models, based on the cost-effectiveness allocation performed by the global models. The impacts of near-term policy assumption, including the implementation and enhancement of the 2030 target of the nationally determined contribution (NDC), are also considered. Our estimates show that the low budget scenarios require a 75% reduction of CO2 emissions by 2050 below the 2010 level, which is nearly the same as Japan’s governmental 2050 goal of reducing greenhouse gas emissions by 80%. With regard to near-term actions, Japan’s 2030 target included in the NDC is on track to meet the high budget scenario, whereas it is falling short for the low budget scenario, which would require emission reductions immediately after 2020. Whereas models differ in the type of energy source on which they foresee Japan basing its decarbonization process (e.g., nuclear- or variable renewable energy-dependent), the large-scale deployment of low-carbon energy (nuclear, renewable, and carbon capture and storage) is shared across most models in both the high and low budget scenarios. By 2050, low-carbon energy represents 44–54% of primary energy and 86–97% of electricity supply in the high and low budget scenarios, respectively. © 2019, The Author(s).
  • Item
    Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Hanssen, Steef V.; Daioglou, Vassilis; Steinmann, Zoran J.N.; Frank, Stefan; Popp, Alexander; Brunelle, Thierry; Lauri, Pekka; Hasegawa, Tomoko; Huijbregts, Mark A.J.; Van Vuuren, Detlef P.
    In the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7–50% of bioenergy demand towards 2050, and 2–30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials. © 2019, The Author(s).