Search Results

Now showing 1 - 4 of 4
  • Item
    Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter
    (Katlenburg-Lindau : European Geosciences Union, 2021) Yuan, Jinfeng; Modini, Robin Lewis; Zanatta, Marco; Herber, Andreas B.; Müller, Thomas; Wehner, Birgit; Poulain, Laurent; Tuch, Thomas; Baltensperger, Urs; Gysel-Beer, Martin
    Properties of atmospheric black carbon (BC) particles were characterized during a field experiment at a rural background site (Melpitz, Germany) in February 2017. BC absorption at a wavelength of 870 nm was measured by a photoacoustic extinctiometer, and BC physical properties (BC mass concentration, core size distribution and coating thickness) were measured by a single-particle soot photometer (SP2). Additionally, a catalytic stripper was used to intermittently remove BC coatings by alternating between ambient and thermo-denuded conditions. From these data the mass absorption cross section of BC (MACBC) and its enhancement factor (EMAC) were inferred for essentially waterfree aerosol as present after drying to low relative humidity (RH). Two methods were applied independently to investigate the coating effect on EMAC: A correlation method (MACBC; ambient vs. BC coating thickness) and a denuding method (MACBC; ambient vs. MACBC; denuded). Observed EMAC values varied from 1.0 to 1.6 (lower limit from denuding method) or 1:2 to 1.9 (higher limit from correlation method), with the mean coating volume fraction ranging from 54% to 78% in the dominating mass equivalent BC core diameter range of 200?220 nm.MACBC and EMAC were strongly correlated with coating thickness of BC. By contrast, other potential drivers of EMAC variability, such as different BC sources (air mass origin and absorption Angström exponent), coating composition (ratio of inorganics to organics) and BC core size distribution, had only minor effects. These results for ambient BC measured at Melpitz during winter show that the lensing effect caused by coatings on BC is the main driver of the variations in MACBC and EMAC, while changes in other BC particle properties such as source, BC core size or coating composition play only minor roles at this rural background site with a large fraction of aged particles. Indirect evidence suggests that potential dampening of the lensing effect due to unfavorable morphology was most likely small or even negligible.
  • Item
    Atmospheric new particle formation at the research station Melpitz, Germany: Connection with gaseous precursors and meteorological parameters
    (Katlenburg-Lindau : EGU, 2018) Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Manninen, Hanna Elina; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram
    This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.
  • Item
    Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
    (Katlenburg-Lindau : EGU, 2022) Wang, Yuan; Henning, Silvia; Poulain, Laurent; Lu, Chunsong; Stratmann, Frank; Wang, Yuying; Niu, Shengjie; Pöhlker, Mira L.; Herrmann, Hartmut; Wiedensohler, Alfred
    Understanding aerosol particle activation is essential for evaluating aerosol indirect effects (AIEs) on climate. Long-term measurements of aerosol particle activation help to understand the AIEs and narrow down the uncertainties of AIEs simulation. However, they are still scarce. In this study, more than 4 years of comprehensive aerosol measurements were utilized at the central European research station of Melpitz, Germany, to gain insight into the aerosol particle activation and provide recommendations on improving the prediction of number concentration of cloud condensation nuclei (CCN, NCCN). (1) The overall CCN activation characteristics at Melpitz are provided. As supersaturation (SS) increases from 0.1% to 0.7%, the median NCCN increases from 399 to 2144cm-3, which represents 10% to 48% of the total particle number concentration with a diameter range of 10-800nm, while the median hygroscopicity factor (κ) and critical diameter (Dc) decrease from 0.27 to 0.19 and from 176 to 54nm, respectively. (2) Aerosol particle activation is highly variable across seasons, especially at low-SS conditions. At SSCombining double low line0.1%, the median NCCN and activation ratio (AR) in winter are 1.6 and 2.3 times higher than the summer values, respectively. (3) Both κ and the mixing state are size-dependent. As the particle diameter (Dp) increases, κ increases at Dp of 1/440 to 100nm and almost stays constant at Dp of 100 to 200nm, whereas the degree of the external mixture keeps decreasing at Dp of 1/440 to 200nm. The relationships of κ vs. Dp and degree of mixing vs. Dp were both fitted well by a power-law function. (4) Size-resolved κ improves the NCCN prediction. We recommend applying the κ-Dp power-law fit for NCCN prediction at Melpitz, which performs better than using the constant κ of 0.3 and the κ derived from particle chemical compositions and much better than using the NCCN (AR) vs. SS relationships. The κ-Dp power-law fit measured at Melpitz could be applied to predict NCCN for other rural regions. For the purpose of improving the prediction of NCCN, long-term monodisperse CCN measurements are still needed to obtain the κ-Dp relationships for different regions and their seasonal variations.
  • Item
    Development of an online-coupled MARGA upgrade for the 2 h interval quantification of low-molecular-weight organic acids in the gas and particle phases
    (Göttingen : Copernicus GmbH, 2019) Stieger, B.; Spindler, G.; Van Pinxteren, D.; Grüner, A.; Wallasch, M.; Herrmann, H.
    A method is presented to quantify the lowmolecular- weight organic acids such as formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phases, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (Compact IC) instrument. Therefore, every second hourly integrated MARGA gas and particle samples were collected and analyzed by the Compact IC, resulting in 12 values per day for each phase. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates for both isocratic and gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion-exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid-phase extraction consisting of a methacrylate-polymer-based sorbent with quaternary ammonium groups. The limits of detection of the method range between 0.5 ngm3 for malonate and 17.4 ngm3 for glutarate. Precisions are below 1.0 %, except for glycolate (2.9 %) and succinate (1.0 %). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional Compact IC are in agreement with each other (R2 D0.95-0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 306 ngm3 for acetic acid, followed by formic (199 ngm3), propionic (83 ngm3), pyruvic (76 ngm3), butyric (34 ngm3) and glycolic acid (32 ngm3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 26, 31 and 30 ngm3, respectively. Elevated concentrations of gas-phase formic acid and particulate oxalate in the late afternoon indicate photochemical formation as a source.