Search Results

Now showing 1 - 2 of 2
  • Item
    Modulated martensite: Why it forms and why it deforms easily
    (Milton Park : Taylor & Francis, 2011) Kaufmann, S.; Niemann, R.; Thersleff, T.; Rößler, U.K.; Heczko, O.; Buschbeck, J.; Holzapfel, B.; Schultz, L.; Fähler, S.
    Diffusionless phase transitions are at the core of the multifunctionality of (magnetic) shape memory alloys, ferroelectrics and multiferroics. Giant strain effects under external fields are obtained in low symmetric modulated martensitic phases. We outline the origin of modulated phases, their connection with tetragonal martensite and consequences owing to their functional properties by analysing the martensitic microstructure of epitaxial Ni–Mn–Ga films from the atomic to the macroscale. Geometrical constraints at an austenite–martensite phase boundary act down to the atomic scale. Hence, a martensitic microstructure of nanotwinned tetragonal martensite can form. Coarsening of twin variants can reduce twin boundary energy, a process we could observe from the atomic to the millimetre scale. Coarsening is a fractal process, proceeding in discrete steps by doubling twin periodicity. The collective defect energy results in a substantial hysteresis, which allows the retention of modulated martensite as a metastable phase at room temperature. In this metastable state, elastic energy is released by the formation of a 'twins within twins' microstructure that can be observed from the nanometre to the millimetre scale. This hierarchical twinning results in mesoscopic twin boundaries. Our analysis indicates that mesoscopic boundaries are broad and diffuse, in contrast to the common atomically sharp twin boundaries of tetragonal martensite. We suggest that the observed extraordinarily high mobility of such mesoscopic twin boundaries originates from their diffuse nature that renders pinning by atomistic point defects ineffective.
  • Item
    Adhesive and Self-Healing Polyurethanes with Tunable Multifunctionality
    ([Beijing] : China Association for Science and Technology, 2022) Zhou, Lei; Zhang, Lu; Li, Peichuang; Maitz, Manfred F.; Wang, Kebing; Shang, Tengda; Dai, Sheng; Fu, Yudie; Zhao, Yuancong; Yang, Zhilu; Wang, Jin; Li, Xin
    Many polyurethanes (PUs) are blood-contacting materials due to their good mechanical properties, fatigue resistance, cytocompatibility, biosafety, and relatively good hemocompatibility. Further functionalization of the PUs using chemical synthetic methods is especially attractive for expanding their applications. Herein, a series of catechol functionalized PU (CPU-PTMEG) elastomers containing variable molecular weight of polytetramethylene ether glycol (PTMEG) soft segment are reported by stepwise polymerization and further introduction of catechol. Tailoring the molecular weight of PTMEG fragment enables a regulable catechol content, mobility of the chain segment, hydrogen bond and microphase separation of the C-PU-PTMEG elastomers, thus offering tunability of mechanical strength (such as breaking strength from 1.3 MPa to 5.7 MPa), adhesion, self-healing efficiency (from 14.9% to 96.7% within 2 hours), anticoagulant, antioxidation, anti-inflammatory properties and cellular growth behavior. As cardiovascular stent coatings, the C-PU-PTMEGs demonstrate enough flexibility to withstand deformation during the balloon dilation procedure. Of special importance is that the C-PU-PTMEG-coated surfaces show the ability to rapidly scavenge free radicals to maintain normal growth of endothelial cells, inhibit smooth muscle cell proliferation, mediate inflammatory response, and reduce thrombus formation. With the universality of surface adhesion and tunable multifunctionality, these novel C-PU-PTMEG elastomers should find potential usage in artificial heart valves and surface engineering of stents.