Search Results

Now showing 1 - 2 of 2
  • Item
    Determination of Pressure Dependence of Polymer Phase Transitions by pVT Analysis
    (Basel : MDPI, 2018) Pionteck, Jürgen
    Glass transitions, melting, crystallization, and the isotropization of polymers are connected with changes in the density, respectively the specific volume (Vsp), which can be analyzed by dilatometric methods. Here, the pressure dependence of such transitions is determined by pressure volume temperature (pVT) analysis for different thermoplastic polymers in the pressure range of 10 to 200 MPa, and the temperature range from room temperature to 350 °C. The values for ambient pressure are extrapolated. It is shown that polymer transitions always increase with pressure, and that the melting temperature and glass transition temperature are nearly linearly dependent on pressure. This information, as well as the observed density changes with pressure and temperature, is very important for the processing of thermoplastics, including their simulation, as well as for the thermodynamic interpretations of the transition’s nature.
  • Item
    Magnetocaloric performance of the three-component Ho1-xErxNi2 (x = 0.25, 0.5, 0.75) Laves phases as composite refrigerants
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Ćwik, Jacek; Koshkid’ko, Yurii; Nenkov, Konstantin; Tereshina-Chitrova, Evgenia; Małecka, Małgorzata; Weise, Bruno; Kowalska; Karolina
    To date, significant efforts have been put into searching for materials with advanced magnetocaloric properties which show promise as refrigerants and permit realization of efficient cooling. The present study, by an example of Ho1−xErxNi2, develops the concept of magnetocaloric efficiency in the rare-earth Laves-phase compounds. Based on the magneto-thermodynamic properties, their potentiality as components of magnetocaloric composites is illustrated. The determined regularities in the behaviour of the heat capacity, magnetic entropy change, and adiabatic temperature change of the system substantiate reaching high magnetocaloric potentials in a desired temperature range. For the Ho1−xErxNi2 solid solutions, we simulate optimal molar ratios and construct the composites used in magnetic refrigerators performing an Ericsson cycle at low temperatures. The tailored magnetocaloric characteristics are designed and efficient procedures for their manufacturing are developed. Our calculations based on the real empirical data are very promising and open avenue to further experimental studies. Systems showing large magnetocaloric effect (MCE) at low temperatures are of importance due to their potential utilization in refrigeration for gas liquefaction.