Search Results

Now showing 1 - 3 of 3
  • Item
    On the interaction of a microwave excited oxygen plasma with a jet of precursor material for deposition applications
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2019) Methling, R.; Hempel, F.; Baeva, M.; Trautvetter, T.; Baierl, H.; Foest, R.
    A plasma source based on a microwave discharge at atmospheric pressure is used to produce an oxygen plasma torch. A liquid precursor material is evaporated and injected into the torch through a nozzle, causing oxidization and deposition of silica at a nearby quartz substrate. The temperature generated inside the plasma source and in the plume, in the region of treatment, and at the substrate surface are key parameters, which are needed for process description and optimization of plasma-chemical reactions. Optical emission spectroscopy and thermography were applied to observe and characterize the jet behavior and composition. The experimental results are compared with self-consistent modeling.
  • Item
    Study of modified area of polymer samples exposed to a he atmospheric pressure plasma jet using different treatment conditions
    (Basel : MDPI, 2020) Nishime, Thalita M.C.; Wagner, Robert; Kostov, Konstantin G.
    In the last decade atmospheric pressure plasma jets (APPJs) have been routinely employed for surface processing of polymers due to their capability of generating very reactive chemistry at near-ambient temperature conditions. Usually, the plasma jet modification effect spans over a limited area (typically a few cm²), therefore, for industrial applications, where treatment of large and irregular surfaces is needed, jet and/or sample manipulations are required. More specifically, for treating hollow objects, like pipes and containers, the plasma jet must be introduced inside of them. In this case, a normal jet incidence to treated surface is difficult if not impossible to maintain. In this paper, a plasma jet produced at the end of a long flexible plastic tube was used to treat polyethylene terephthalate (PET) samples with different incidence angles and using different process parameters. Decreasing the angle formed between the plasma plume and the substrate leads to increase in the modified area as detected by surface wettability analysis. The same trend was confirmed by the distribution of reactive oxygen species (ROS), expanding on starch-iodine-agar plates, where a greater area was covered when the APPJ was tilted. Additionally, UV-VUV irradiation profiles obtained from the plasma jet spreading on the surface confirms such behavior.
  • Item
    Inhibitory Effect of Cold Atmospheric Plasma on Chronic Wound-Related Multispecies Biofilms
    (Basel : MDPI, 2021) Carvalho de Oliveira, Maria Alcionéia; Lima, Gabriela de Morais Gouvêa; Castaldelli Nishime, Thalita M.; Gontijo, Aline Vidal Lacerda; Menezes, Beatriz Rossi Canuto de; Caliari, Marcelo Vidigal; Kostov, Konstantin Georgiev; Koga-Ito, Cristiane Yumi
    The presence of microbial biofilms in the wounds affects negatively the healing process and can contribute to therapeutic failures. This study aimed to establish the effective parameters of cold atmospheric plasma (CAP) against wound-related multispecies and monospecies biofilms, and to evaluate the cytotoxicity and genotoxicity of the protocol. Monospecies and multispecies biofilms were formed by methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Enterococcus faecalis. The monospecies biofilms were grown in 96 wells plates and multispecies biofilm were formed on collagen membranes. The biofilms were exposed to helium CAP for 1, 3, 5 and 7 min. In monospecies biofilms, the inhibitory effect was detected after 1 min of exposure for E. faecalis and after 3 min for MRSA. A reduction in P. aeruginosa biofilm’s viability was detected after 7 min of exposure. For the multispecies biofilms, the reduction in the overall viability was detected after 5 min of exposure to CAP. Additionally, cytotoxicity and genotoxicity were evaluated by MTT assay and static cytometry, respectively. CAP showed low cytotoxicity and no genotoxicity to mouse fibroblastic cell line (3T3). It could be concluded that He-CAP showed inhibitory effect on wound-related multispecies biofilms, with low cytotoxicity and genotoxicity to mammalian cells. These findings point out the potential application of CAP in wound care.