Search Results

Now showing 1 - 4 of 4
  • Item
    Modeling the contact mechanics of hydrogels
    (Basel : MDPI, 2019) Mueser, M.H.; Li, H.; Bennewitz, R.
    A computationally lean model for the coarse-grained description of contact mechanics of hydrogels is proposed and characterized. It consists of a simple bead-spring model for the interaction within a chain, potentials describing the interaction between monomers and mold or confining walls, and a coarse-grained potential reflecting the solvent-mediated effective repulsion between non-bonded monomers. Moreover, crosslinking only takes place after the polymers have equilibrated in their mold. As such, the model is able to reflect the density, solvent quality, and the mold hydrophobicity that existed during the crosslinking of the polymers. Finally, such produced hydrogels are exposed to sinusoidal indenters. The simulations reveal a wavevector-dependent effective modulus E*(q) with the following properties: (i) stiffening under mechanical pressure, and a sensitivity of E*(q) on (ii) the degree of crosslinking at large wavelengths, (iii) the solvent quality, and (iv) the hydrophobicity of the mold in which the polymers were crosslinked. Finally, the simulations provide evidence that the elastic heterogeneity inherent to hydrogels can suffice to pin a compressed hydrogel to a microscopically frictionless wall that is undulated at a mesoscopic length scale. Although the model and simulations of this feasibility study are only two-dimensional, its generalization to three dimensions can be achieved in a straightforward fashion. © 2019 by the authors.
  • Item
    Performance assessment of a solar dryer system using small parabolic dish and alumina/oil nanofluid: Simulation and experimental study
    (Basel : MDPI AG, 2019) Arkian, Amir Hossein; Najafi, Gholamhassan; Gorjian, Shiva; Loni, Reyhaneh; Bellos, Evangelos; Yusaf, Talal
    In this study, a small dish concentrator with a cylindrical cavity receiver was experimentally investigated as the heat source of a dryer. The system was examined for operation with pure thermal oil and Al2O3/oil nanofluid as the working fluids in the solar system. Moreover, the design, the development, and the evaluation of the dried mint plant are presented in this work. Also, the solar dryer system was simulated by the SolidWorks and ANSYS CFX software. On the other side, the color histogram of the wet and dried mint samples based on the RGB method was considered. The results revealed that the different temperatures of the solar working fluids at the inlet and outlet of the cavity receiver showed similar trend data compared to the variation of the solar radiation during the experimental test. Moreover, it is found that the cavity heat gain and thermal efficiency of the solar system was improved by using the nanofluid as the solar working fluid. Furthermore, the required time for mint drying had decreased by increasing the drying temperature and increasing air speed. The highest drying time was measured equal to 320 min for the condition of the air speed equal to 0.5 m/s and the drying temperature of 30 ◦C. A good agreement was observed between the calculated numerical results and measured experimental data. Finally, based on the color histogram of the wet and dried mint samples, it was concluded that intensity amount of the red color of the mint increased with the drying process compared to intensity amount of the red color of the wet mint sample. © 2019 by the authors.
  • Item
    Predicting Paris: Multi-Method Approaches to Forecast the Outcomes of Global Climate Negotiations
    (Lisbon : Cogitatio Press, 2016) Sprinz, Detlef F.; Bueno de Mesquita, Bruce; Kallbekken, Steffen; Stokman, Frans; Sælen, Håkon; Thomson, Robert
    We examine the negotiations held under the auspices of the United Nations Framework Convention of Climate Change in Paris, December 2015. Prior to these negotiations, there was considerable uncertainty about whether an agreement would be reached, particularly given that the world’s leaders failed to do so in the 2009 negotiations held in Copenhagen. Amid this uncertainty, we applied three different methods to predict the outcomes: an expert survey and two negotiation simulation models, namely the Exchange Model and the Predictioneer’s Game. After the event, these predictions were assessed against the coded texts that were agreed in Paris. The evidence suggests that combining experts’ predictions to reach a collective expert prediction makes for significantly more accurate predictions than individual experts’ predictions. The differences in the performance between the two different negotiation simulation models were not statistically significant.
  • Item
    TRAIT2D: a Software for Quantitative Analysis of Single Particle Diffusion Data
    (London : F1000 Research Ltd, 2021) Reina, Francesco; Wigg, John M.A.; Dmitrieva, Mariia; Lefebvre, Joël; Rittscher, Jens; Eggeling, Christian
    Single particle tracking (SPT) is one of the most widely used tools in optical microscopy to evaluate particle mobility in a variety of situations, including cellular and model membrane dynamics. Recent technological developments, such as Interferometric Scattering microscopy, have allowed recording of long, uninterrupted single particle trajectories at kilohertz framerates. The resulting data, where particles are continuously detected and do not displace much between observations, thereby do not require complex linking algorithms. Moreover, while these measurements offer more details into the short-term diffusion behaviour of the tracked particles, they are also subject to the influence of localisation uncertainties, which are often underestimated by conventional analysis pipelines. we thus developed a Python library, under the name of TRAIT2D (Tracking Analysis Toolbox – 2D version), in order to track particle diffusion at high sampling rates, and analyse the resulting trajectories with an innovative approach. The data analysis pipeline introduced is more localisation-uncertainty aware, and also selects the most appropriate diffusion model for the data provided on a statistical basis. A trajectory simulation platform also allows the user to handily generate trajectories and even synthetic time-lapses to test alternative tracking algorithms and data analysis approaches. A high degree of customisation for the analysis pipeline, for example with the introduction of different diffusion modes, is possible from the source code. Finally, the presence of graphical user interfaces lowers the access barrier for users with little to no programming experience.