Search Results

Now showing 1 - 3 of 3
  • Item
    Covalency-Driven Preservation of Local Charge Densities in a Metal-to-Ligand Charge-Transfer Excited Iron Photosensitizer
    (Weinheim : Wiley-VCH, 2019) Jay, Raphael M.; Eckert, Sebastian; Vaz da Cruz, Vinicius; Fondell, Mattis; Mitzner, Rolf; Föhlisch, Alexander
    Covalency is found to even out charge separation after photo-oxidation of the metal center in the metal-to-ligand charge-transfer state of an iron photosensitizer. The σ-donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble-gas configuration. These findings are enabled through element-specific and orbital-selective time-resolved X-ray absorption spectroscopy at the iron L-edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge-separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron–hole pair associated with the electron-transfer process. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy
    (London [u.a.] : Royal Society of Chemistry, 2014) Zamponi, F.; Penfold, T.J.; Nachtegaal, M.; Lübcke, A.; Rittmann, J.; Milne, C.J.; Chergui, M.; van Bokhoven, J.A.
    Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.
  • Item
    Local Structure Investigation of Cu Precipitates in Modified 18CrNiMo7-6 Steels by Synchrotron X-ray Absorption Spectroscopy
    (Tōkyō : ISIJ, 2022) Suwanpinij, Piyada; Bambach, Margarita; Bootchanont, Atipong; Sailuam, Wutthigrai
    This paper studied the copper precipitation in an 18CrNiMo7-6 martensitic steel (0.19 mass% C) with copper addition and its resulting improved mechanical behavior. The development of nano-precipitates in two modified alloys with 1.0 and 1.5 mass% copper addition was investigated by means of synchrotron X-ray absorption spectroscopy. The first-principles calculation has enabled the modeling of the unavailable copper standards: solid solution, B2, BCC, 2H, 9R and 3R, for calculating the XAS spectra and successfully identified the unknown phases after aging for the first time in this steel group. The samples alloyed with 1.5 mass% copper yielded the semi-coherent 9R structure when aged at 500°C between 166 to 360 minutes. The ones containing 1 mass% copper formed the B2 ordered structure after aging at 480°C for 50 minutes and revealed the co-existence of the 9R after 240 minutes. The analysis reveals the precipitation kinetics of copper in low carbon martensitic steel and helps determine the optimum tempering parameters to adjust peak strength.