Search Results

Now showing 1 - 4 of 4
  • Item
    A post-IR IRSL chronology and dust mass accumulation rates of the Nosak loess-palaeosol sequence in northeastern Serbia
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Perić, Zoran M.; Marković, Slobodan B.; Sipos, György; Gavrilov, Milivoj B.; Thiel, Christine; Zeeden, Christian; Murray, Andrew S.
    In the Middle Danube Basin, Quaternary deposits are widely distributed in the Vojvodina region where they cover about 95% of the area. Major research during the last two decades has been focused on loess deposits in the Vojvodina region. During this period, loess in the Vojvodina region has become one of the most important Pleistocene European continental climatic and environmental records. Here we present the dating results of 15 samples taken from the Nosak loess-palaeosol sequence in northeastern Serbia in order to establish a chronology over the last three glacial–interglacial cycles. We use the pIRIR290 signal of the 4–11 μm polymineral grains. The calculated ages are within the error limits partially consistent with the proposed multi-millennial chronostratigraphy for Serbian loess. The average mass accumulation rate for the last three glacial–interglacial cycles is 265 g m−2 a−1, which is in agreement with the values of most sites in the Carpathian Basin. Our results indicate a highly variable deposition rate of loess, especially during the MIS 3 and MIS 6 stages, which is contrary to most studies conducted in Serbia where linear sedimentation rates were assumed. © 2020 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium
  • Item
    Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site
    ([London] : Nature Publishing Group UK, 2018) Stevens, T.; Buylaert, J.-P.; Thiel, C.; Újvári, G.; Yi, S.; Murray, A.S.; Frechen, M.; Lu, H.
    The International Commission on Stratigraphy (ICS) utilises benchmark chronostratigraphies to divide geologic time. The reliability of these records is fundamental to understand past global change. Here we use the most detailed luminescence dating age model yet published to show that the ICS chronology for the Quaternary terrestrial type section at Jingbian, desert marginal Chinese Loess Plateau, is inaccurate. There are large hiatuses and depositional changes expressed across a dynamic gully landform at the site, which demonstrates rapid environmental shifts at the East Asian desert margin. We propose a new independent age model and reconstruct monsoon climate and desert expansion/contraction for the last ~250 ka. Our record demonstrates the dominant influence of ice volume on desert expansion, dust dynamics and sediment preservation, and further shows that East Asian Summer Monsoon (EASM) variation closely matches that of ice volume, but lags insolation by ~5 ka. These observations show that the EASM at the monsoon margin does not respond directly to precessional forcing.
  • Item
    Spatiotemporal data analysis with chronological networks
    ([London] : Nature Publishing Group UK, 2020) Ferreira, Leonardo N.; Vega-Oliveros, Didier A.; Cotacallapa, Moshé; Cardoso, Manoel F.; Quiles, Marcos G.; Zhao, Liang; Macau, Elbert E. N.
    The number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of dividing a geometric space into grid cells represented by nodes connected chronologically. Strong links in the network represent consecutive recurrent events between cells. The chronnet construction process is fast, making the model suitable to process large data sets. Using artificial and real data sets, we show how chronnets can capture data properties beyond simple statistics, like frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Therefore, we conclude that chronnets represent a robust tool for the analysis of spatiotemporal data sets.
  • Item
    Correlating the ancient Maya and modern european calendars with high-precision AMS 14C dating
    (London : Nature Publishing Group, 2013) Kennett, D.J.; Hajdas, I.; Culleton, B.J.; Belmecheri, S.; Martin, S.; Neff, H.; Awe, J.; Graham, H.V.; Freeman, K.H.; Newsom, L.; Lentz, D.L.; Anselmetti, F.S.; Robinson, M.; Marwan, N.; Southon, J.; Hodell, D.A.; Haug, G.H.
    The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial.Wereport a series of high-resolution AMS14C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel betweenAD 658-696. This strongly supports the Goodman-Mart?nez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.