Search Results

Now showing 1 - 7 of 7
  • Item
    Czochralski growth of mixed cubic sesquioxide crystals in the ternary system Lu2O3-Sc2O3-Y2O3
    (Oxford [u.a.] : Wiley-Blackwell, 2021) Kränkel, Christian; Uvarova, Anastasia; Haurat, Émile; Hülshoff, Lena; Brützam, Mario; Guguschev, Christo; Kalusniaka, Sascha; Klimm, Detlef
    Cubic rare-earth sesquioxide crystals are strongly demanded host materials for high power lasers, but due to their high melting points investigations on their thermodynamics and the growth of large-size crystals of high optical quality remain a challenge. Detailed thermal investigations of the ternary system Lu2O3-Sc2O3-Y2O3 revealing a large range of compositions with melting temperatures below 2200°C and a minimum of 2053°C for the composition (Sc0.45Y0.55)2O3 are presented. These reduced temperatures enable for the first time the growth of high optical quality mixed sesquioxide crystals with disordered structure by the conventional Czochralski method from iridium crucibles. An (Er0.07Sc0.50Y0.43)2O3 crystal is successfully grown and characterized with respect to its crystallographic properties as well as its composition, thermal conductivity and optical absorption in the 1μm range. © 2021 International Union of Crystallography. All rights reserved.
  • Item
    Crystal Growth of the Quasi-2D Quarternary Compound AgCrP2S6 by Chemical Vapor Transport
    (2021) Selter, Sebastian; Shemerliuk, Yuliia; Büchner, Bernd; Aswartham, Saicharan
    We report optimized crystal growth conditions for the quarternary compound AgCrP2S6 by chemical vapor transport. Compositional and structural characterization of the obtained crystals were carried out by means of energy-dispersive X-ray spectroscopy and powder X-ray diffraction. AgCrP2S6 is structurally closely related to the M2P2S6 family, which contains several compounds that are under investigation as 2D magnets. As-grown crystals exhibit a plate-like, layered morphology as well as a hexagonal habitus. AgCrP2S6 crystallizes in monoclinic symmetry in the space group P2/a (No. 13). The successful growth of large high-quality single crystals paves the way for further investigations of low dimensional magnetism and its anisotropies in the future and may further allow for the manufacturing of few-layer (or even monolayer) samples by exfoliation.
  • Item
    The Weak 3D Topological Insulator Bi12Rh3Sn3I9
    (Weinheim : Wiley-VCH, 2020) Lê Anh, Mai; Kaiser, Martin; Ghimire, Madhav Prasad; Richter, Manuel; Koepernik, Klaus; Gruschwitz, Markus; Tegenkamp, Christoph; Doert, Thomas; Ruck, Michael
    Topological insulators (TIs) gained high interest due to their protected electronic surface states that allow dissipation-free electron and information transport. In consequence, TIs are recommended as materials for spintronics and quantum computing. Yet, the number of well-characterized TIs is rather limited. To contribute to this field of research, we focused on new bismuth-based subiodides and recently succeeded in synthesizing a new compound Bi12Rh3Sn3I9, which is structurally closely related to Bi14Rh3I9 – a stable, layered material. In fact, Bi14Rh3I9 is the first experimentally supported weak 3D TI. Both structures are composed of well-defined intermetallic layers of ∞2[(Bi4Rh)3I]2+ with topologically protected electronic edge-states. The fundamental difference between Bi14Rh3I9 and Bi12Rh3Sn3I9 lies in the composition and the arrangement of the anionic spacer. While the intermetallic 2D TI layers in Bi14Rh3I9 are isolated by ∞1[Bi2I8]2− chains, the isoelectronic substitution of bismuth(III) with tin(II) leads to ∞2[Sn3I8]2− layers as anionic spacers. First transport experiments support the 2D character of this material class and revealed metallic conductivity. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Control of phase formation of (AlxGa1 - X)2O3thin films on c-plane Al2O3
    (Bristol : IOP Publ., 2020) Hassa, Anna; Wouters, Charlotte; Kneiß, Max; Splith, Daniel; Sturm, Chris; von Wenckstern, Holger; Albrecht, Martin; Lorenz, Michael; Grundmann, Marius
    In this paper, the growth of orthorhombic and monoclinic (Al x Ga1 - x )2O3 thin films on (00.1) Al2O3 by tin-assisted pulsed laser deposition is investigated as a function of oxygen pressure p(O2) and substrate temperature Tg. For certain growth conditions, defined by Tg = 580°C and p(O2) = 0.016 mbar, the orthorhombic ?-polymorph is stabilized. For Tg = 540°C and p(O2) = 0.016 mbar, the ?-, and the ß-, as well as the spinel ?-polymorph coexist, as illustrated by XRD 2?-?-scans. Further employed growth parameters result in thin films with a monoclinic ß-gallia structure. For all polymorphs, p(O2) and Tg affect the formation and desorption of volatile suboxides, and thereby the growth rate and the cation composition. For example, low oxygen pressures lead to low growth rates and enhanced Al incorporation. This facilitates the structural engineering of polymorphic, ternary (Al,Ga)2O3 via selection of the relevant process parameters. Transmission electron microscopy (TEM) studies of a ? - (Al0.13Ga0.87)2O3 thin film reveal a more complex picture compared to that derived from x-ray diffraction measurements. Furthermore, this study presents the possibility of controlling the phase formation, as well as the Al-content, of thin films based on the choice of their growth conditions. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Tuning Magnetic and Transport Properties in Quasi-2D (Mn1−xNix)2P2S6 Single Crystals
    (Basel : MDPI, 2021) Shemerliuk, Yuliia; Zhou, Yonghui; Yang, Zhaorong; Cao, Gang; Wolter, Anja U.; Büchner, Bernd; Aswartham, Saicharan
    We report an optimized chemical vapor transport method to grow single crystals of (Mn1−xNix)2P2S6 where x = 0, 0.3, 0.5, 0.7, and 1. Single crystals up to 4 mm × 3 mm × 200 μm were obtained by this method. As-grown crystals are characterized by means of scanning electron microscopy and powder X-ray diffraction measurements. The structural characterization shows that all crystals crystallize in monoclinic symmetry with the space group C2/m (No. 12). We have further investigated the magnetic properties of this series of single crystals. The magnetic measurements of the all as-grown single crystals show long-range antiferromagnetic order along all principal crystallographic axes. Overall, the Néel temperature TN is non-monotonous; with increasing Ni2+ doping, the temperature of the antiferromagnetic phase transition first decreases from 80 K for pristine Mn2P2S6 (x = 0) up to x = 0.5 and then increases again to 155 K for pure Ni2P2S6 (x = 1). The magnetic anisotropy switches from out-of-plane to in-plane as a function of composition in (Mn1−xNix)2P2S6 series. Transport studies under hydrostatic pressure on the parent compound Mn2P2S6 evidence an insulator-metal transition at an applied critical pressure of ~22 GPa.
  • Item
    Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport
    (Weinheim : Wiley-VCH, 2019) Grönke, Martin; Buschbeck, Benjamin; Schmidt, Peer; Valldor, Martin; Oswald, Steffen; Hao, Qi; Lubk, Axel; Wolf, Daniel; Steiner, Udo; Büchner, Bernd; Hampel, Silke
    The experimental observation of intrinsic ferromagnetism in single layered chromium trihalides CrX3 (X = Cl, Br, I) has gained outstanding attention recently due to their possible implementation in spintronic devices. However, the reproducible preparation of highly crystalline chromium(III) halide nanolayers without stacking faults is still an experimental challenge. As chromium trihalides consist of adjacent layers with weak interlayer coupling, the preparation of ultrathin CrX3 nanosheets directly on substrates via vapor transport proves as an advantageous synthesis technique. It is demonstrated that vapor growth of ultrathin highly crystalline CrX3 micro- and nanosheets succeeds directly on yttrium stabilized zirconia substrates in a one-step process via chemical vapor transport (CVT) in temperature gradients of 100 K (600 °C → 500 °C for CrCl3 and 650 °C → 550 °C for CrBr3 or CrI3) without a need for subsequent delamination. Due to simulation results, optimization of synthesis conditions is realized and phase pure CrX3 nanosheets with thicknesses ≤25 nm are obtained via short term CVT. The nanosheets morphology, crystallinity, and phase purity are analyzed by several techniques, including microscopy, diffraction, and spectroscopy. Furthermore, a potential subsequent delamination technique is demonstrated to give fast access to CrX3 monolayers using the example of CrCl3. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Growth and applications of GeSn-related group-IV semiconductor materials
    (Bristol : IOP Publishing, 2015) Zaima, Shigeaki; Nakatsuka, Osamu; Taoka, Noriyuki; Kurosawa, Masashi; Takeuchi, Wakana; Sakashita, Mitsuo
    We review the technology of Ge1−xSnx-related group-IV semiconductor materials for developing Si-based nanoelectronics. Ge1−xSnx-related materials provide novel engineering of the crystal growth, strain structure, and energy band alignment for realising various applications not only in electronics, but also in optoelectronics. We introduce our recent achievements in the crystal growth of Ge1−xSnx-related material thin films and the studies of the electronic properties of thin films, metals/Ge1−xSnx, and insulators/Ge1−xSnx interfaces. We also review recent studies related to the crystal growth, energy band engineering, and device applications of Ge1−xSnx-related materials, as well as the reported performances of electronic devices using Ge1−xSnx related materials.