Search Results

Now showing 1 - 2 of 2
  • Item
    Flexible Transparent Barrier Applications of Oxide Thin Films Prepared by Photochemical Conversion at Low Temperature and Ambient Pressure
    (Lausanne : Frontiers Media, 2020) With, Patrick C.; Helmstedt, Ulrike; Prager, Lutz
    Photoconversion of metal-organic precursors to thin film metal oxides using ultraviolet (UV) radiation in oxidative atmosphere is an attractive technology because it can be applied at temperatures <80°C and at ambient pressure. Thus, it enables preparing this class of thin films in a cost-efficient manner on temperature sensitive substrates such as polymer films. In this article, various aspects of research and development in the field of photochemical thin-film fabrication, with particular focus to the application of the produced films as gas permeation barriers for the encapsulation of optoelectronic devices are reviewed. Thereby, it covers investigations on fundamental photochemically initiated reactions for precursor classes containing metal-oxygen and metal-nitrogen bonds, and emphazises the relevance of that understanding for applicative considerations like integration of the single-layer barrier films into relevant encapsulation films. Further perspectives are given concerning integration of additional functionalities like electrical conductivity to the flexible and transparent barrier films. © Copyright © 2020 With, Helmstedt and Prager.
  • Item
    Screening Libraries of Amphiphilic Janus Dendrimers Based on Natural Phenolic Acids to Discover Monodisperse Unilamellar Dendrimersomes
    (Columbus, Ohio : American Chemical Society, 2019) Buzzacchera, Irene; Xiao, Qi; Han, Hong; Rahimi, Khosrow; Li, Shangda; Kostina, Nina Yu; Toebes, B. Jelle; Wilner, Samantha E.; Möller, Martin; Rodriguez-Emmenegger, Cesar; Baumgart, Tobias; Wilson, Daniela A.; Wilson, Christopher J.; Klein, Michael L.; Percec, Virgil
    Natural, including plant, and synthetic phenolic acids are employed as building blocks for the synthesis of constitutional isomeric libraries of self-assembling dendrons and dendrimers that are the simplest examples of programmed synthetic macromolecules. Amphiphilic Janus dendrimers are synthesized from a diversity of building blocks including natural phenolic acids. They self-assemble in water or buffer into vesicular dendrimersomes employed as biological membrane mimics, hybrid and synthetic cells. These dendrimersomes are predominantly uni- or multilamellar vesicles with size and polydispersity that is predicted by their primary structure. However, in numerous cases, unilamellar dendrimersomes completely free of multilamellar assemblies are desirable. Here, we report the synthesis and structural analysis of a library containing 13 amphiphilic Janus dendrimers containing linear and branched alkyl chains on their hydrophobic part. They were prepared by an optimized iterative modular synthesis starting from natural phenolic acids. Monodisperse dendrimersomes were prepared by injection and giant polydisperse by hydration. Both were structurally characterized to select the molecular design principles that provide unilamellar dendrimersomes in higher yields and shorter reaction times than under previously used reaction conditions. These dendrimersomes are expected to provide important tools for synthetic cell biology, encapsulation, and delivery.