Search Results

Now showing 1 - 9 of 9
  • Item
    Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2020) Li, Xiang; Surkus, Annette-Enrica; Rabeah, Jabor; Anwar, Muhammad; Dastigir, Sarim; Junge, Henrik; Brückner, Angelika; Beller, Matthias
    Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Femtosecond stimulated Raman spectroscopy of the cyclobutane thymine dimer repair mechanism: A computational study
    (Washington, DC : American Chemical Society, 2014) Ando, H.; Fingerhut, B.P.; Dorfman, K.E.; Biggs, J.D.; Mukamel, S.
    Cyclobutane thymine dimer, one of the major lesions in DNA formed by exposure to UV sunlight, is repaired in a photoreactivation process, which is essential to maintain life. The molecular mechanism of the central step, i.e., intradimer C-C bond splitting, still remains an open question. In a simulation study, we demonstrate how the time evolution of characteristic marker bands (C=O and C=C/C-C stretch vibrations) of cyclobutane thymine dimer and thymine dinucleotide radical anion, thymidylyl(3′→5′)-thymidine, can be directly probed with femtosecond stimulated Raman spectroscopy (FSRS). We construct a DFT(M05-2X) potential energy surface with two minor barriers for the intradimer C5-C′5 splitting and a main barrier for the C6-C′6 splitting, and identify the appearance of two C5=C6 stretch vibrations due to the C6-C′6 splitting as a spectroscopic signature of the underlying bond splitting mechanism. The sequential mechanism shows only absorptive features in the simulated FSRS signals, whereas the fast concerted mechanism shows characteristic dispersive line shapes. (Figure Presented).
  • Item
    Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook
    (Basel : MDPI, 2018) Agemar, Thorsten; Weber, Josef; Moeck, Inga S.
    Any geothermal resource assessment requires consistent and widely accepted terminology, methods, and reporting schemes that facilitate the comparison of geothermal resource estimates. This paper reviews common resource assessment methods, as well as reporting codes and terminology. Based on a rigorous analysis of the portrayed concepts and methods, it discusses the appropriateness of the existing reporting codes for sustainable utilization of geothermal resources in Germany. Since the last quantitative geothermal resource assessment in Germany was done 15 years ago, a revised report is overdue. Unlike fossil energy commodities, geothermal energy replenishes naturally and heat recuperation increases in created heat sinks. This replenishment process offers the opportunity for sustainable reservoir management in the case of moderate production rates or cyclic operation. Existing reporting codes, however, regard geothermal resources in a similar way to fossil resources or focus too much on field development rather than on the whole assessment process. In order to emphasize the renewability of geothermal energy, we propose the reporting of geothermal capacities (per doublet or per km2) instead of recoverable heat energy which depends very much on project lifetime and other factors. As a first step, a new classification scheme for geothermal resources and reserves is outlined.
  • Item
    On the accuracy of orbital based multi-level approaches for closed-shell transition metal chemistry
    (Cambridge : The Royal Soc. of Chemistry, 2023) Amanollahi, Zohreh; Lampe, Lukas; Bensberg, Moritz; Neugebauer, Johannes; Feldt, Milica
    In this work, we investigate the accuracy of the local molecular orbital molecular orbital (LMOMO) scheme and projection-based wave function-in-density functional theory (WF-in-DFT) embedding for the prediction of reaction energies and barriers of typical reactions involving transition metals. To analyze the dependence of the accuracy on the system partitioning, we apply a manual orbital selection for LMOMO as well as the so-called direct orbital selection (DOS) for both approaches. We benchmark these methods on 30 closed shell reactions involving 16 different transition metals. This allows us to devise guidelines for the manual selection as well as settings for the DOS that provide accurate results within an error of 2 kcal mol−1 compared to local coupled cluster. To reach this accuracy, on average 55% of the occupied orbitals have to be correlated with coupled cluster for the current test set. Furthermore, we find that LMOMO gives more reliable relative energies for small embedded regions than WF-in-DFT embedding.
  • Item
    Probing multiphoton light-induced molecular potentials
    ([London] : Nature Publishing Group UK, 2020) Kübel, M.; Spanner, M.; Dube, Z.; Naumov, A.Yu.; Chelkowski, S.; Bandrauk, A.D.; Vrakking, M.J.J.; Corkum, P.B.; Villeneuve, D.M.; Staudte, A.
    The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules.
  • Item
    The global economic long-term potential of modern biomass in a climate-constrained world
    (Bristol : IOP Publishing, 2014) Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann
    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at $5 GJ−1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by $5 GJ−1 in 2055 and by $10 GJ−1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha−1 yr−1 with and without tax.
  • Item
    Integrate health into decision-making to foster climate action
    (Bristol : IOP Publ., 2021-4-8) Vandyck, Toon; Rauner, Sebastian; Sampedro, Jon; Lanzi, Elisa; Reis, Lara Aleluia; Springmann, Marco; Dingenen, Rita Van
    The COVID-19 pandemic reveals that societies place a high value on healthy lives. Leveraging this momentum to establish a more central role for human health in the policy process will provide further impetus to a sustainable transformation of energy and food systems.
  • Item
    Covalency and vibronic couplings make a nonmagnetic j=3/2 ion magnetic
    (London : Nature Publishing Group, 2016) Xu, Lei; Bogdanov, Nikolay A.; Princep, Andrew; Fulde, Peter; van den Brink, Jeroen; Hozoi, Liviu
    For 4d1 and 5d1 spin–orbit-coupled electron configurations, the notion of nonmagnetic j=3/2 quartet ground state discussed in classical textbooks is at odds with the observed variety of magnetic properties. Here we throw fresh light on the electronic structure of 4d1 and 5d1 ions in molybdenum- and osmium-based double-perovskite systems and reveal different kinds of on-site many-body physics in the two families of compounds: although the sizable magnetic moments and g-factors measured experimentally are due to both metal d–ligand p hybridisation and dynamic Jahn–Teller interactions for 4d electrons, it is essentially d−p covalency for the 5d1 configuration. These results highlight the subtle interplay of spin–orbit interactions, covalency and electron–lattice couplings as the major factor in deciding the nature of the magnetic ground states of 4d and 5d quantum materials. Cation charge imbalance in the double-perovskite structure is further shown to allow a fine tuning of the gap between the t2g and eg levels, an effect of much potential in the context of orbital engineering in oxide electronics.
  • Item
    We need biosphere stewardship that protects carbon sinks and builds resilience
    (Washington, DC : National Acad. of Sciences, 2021) Rockström, Johan; Beringer, Tim; Hole, David; Griscom, Bronson; Mascia, Michael B.; Folke, Carl; Creutzig, Felix
    [no abstract available]