Search Results

Now showing 1 - 2 of 2
  • Item
    Edible insect processing pathways and implementation of emerging technologies
    (Wageningen : Wageningen Academic Publishers, 2021) Ojha, S.; Bußler, S.; Psarianos, M.; Rossi, G.; Schlüter, O.K.
    The processing of insects is paramount to deliver safe and high quality raw materials, ingredients and products for large-scale food and feed applications. Depending upon the nature of the initial material and the desired end product, the processing pathways vary and may include several unit operations currently already used in food and feed processing. Insect processing pathways can involve harvesting, pre-processing, decontamination, further processing, packaging and storage. Several traditional and industrial decontamination methods have been proposed for edible insects, which include smoking, drying, blanching/boiling, marination, cooking, steaming, toasting and their combinations. Further processing steps are employed to produce insect meal, insect flour or extracted insect fractions. Each operation will have a different impact on the chemical and microbiological properties of the final product. Novel food processing technologies (e.g. high pressure processing, pulsed electric field, ultrasound and cold plasma) have shown potential to modify, complement or replace the conventional processing steps in insect processing. These technologies have been tested for microbial decontamination, enzyme inactivation, drying and extraction. Further, these are considered to be environmentally friendly and may be implemented for versatile applications to improve the processing efficiency, safety and quality of insect based products. Future research focuses in insect processing are development of efficient, environmentally friendly and low-cost processes; waste minimisation and incorporation of by-products/co-products.
  • Item
    Capturing Unstable Metallofullerenes
    (Basel : MDPI, 2024) Liu, Fupin; Popov, Alexey A.
    Metallofullerenes are interesting molecules with unique structures and physicochemical properties. After they are formed in the arc-discharge process, they are first buried in the carbon soot, which requires solvent extraction to fish them out, normally followed by HPLC separation. In this minireview, we summarize the main procedures developed to obtain pure metallofullerenes, including well-established extraction with conventional fullerene solvents followed by HPLC (procedure (I) as well as several methods developed for isolation and purification of unstable fullerenes insoluble in conventional fullerene solvents, including chemical modification followed by dissolution (II.1), chemical functionalization during extraction followed by HPLC (II.2), and chemical functionalization of ionic EMFs after redox-extraction followed by HPLC (procedure II.3). The main focus here is on procedure II.3, for which the current status and future perspective are discussed.