Search Results

Now showing 1 - 2 of 2
  • Item
    Growth and martensitic transformation of ferromagnetic Co-Cr-Ga-Si epitaxial films
    (Abingdon : Taylor & Francis, 2023) Ge, Yuru; Lünser, Klara; Ganss, Fabian; Gaal, Peter; Fink, Lukas; Fähler, Sebastian
    During cooling, conventional martensitic transformation can only be realized from austenite to martensite. Recently, a so-called reentrant martensitic transformation attracted much interest due to an additional transformation from martensite to austenite during further cooling. Obviously, materials with this reentrant transformation will increase the number of physical effects and possible applications. However, until now, only bulk samples have been available, which are not suitable for applications in micro-devices. In this work, we focus on the Co-Cr-Ga-Si system and examine the suitability of this system for the growth of thin films. We observed that the films grow epitaxially on MgO (100) substrates and exhibit a martensitic transformation if deposited at a sufficiently high temperature or with an additional heat treatment. Films within the austenite state are ferromagnetic while films within the martensitic state just exhibit a very low ferromagnetic order.
  • Item
    On Curie temperature of B20-MnSi films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Li, Zichao; Yuan, Ye; Begeza, Viktor; Rebohle, Lars; Helm, Manfred; Nielsch, Kornelius; Prucnal, Slawomir; Zhou, Shengqiang
    B20-type MnSi is the prototype magnetic skyrmion material. Thin films of MnSi show a higher Curie temperature than their bulk counterpart. However, it is not yet clear what mechanism leads to the increase of the Curie temperature. In this work, we grow MnSi films on Si(100) and Si(111) substrates with a broad variation in their structures. By controlling the Mn thickness and annealing parameters, the pure MnSi phase of polycrystalline and textured nature as well as the mixed phase of MnSi and MnSi1.7 are obtained. Surprisingly, all these MnSi films show an increased Curie temperature of up to around 43 K. The Curie temperature is likely independent of the structural parameters within our accessibility including the film thickness above a threshold, strain, cell volume and the mixture with MnSi1.7. However, a pronounced phonon softening is observed for all samples, which can tentatively be attributed to slight Mn excess from stoichiometry, leading to the increased Curie temperature.