Search Results

Now showing 1 - 2 of 2
  • Item
    Temperature Dependence of Dark Spot Diameters in GaN and AlGaN
    (Weinheim : Wiley-VCH, 2021) Netzel, Carsten; Knauer, Arne; Brunner, Frank; Mogilatenko, Anna; Weyers, Markus
    Threading dislocations in c-plane (Al,Ga)N layers are surrounded by areas with reduced light generation efficiency, called “dark spots.” These areas are observable in luminescence measurements with spatial resolution in the submicrometer range. Dark spots reduce the internal quantum efficiency in single layers and light-emitting devices. In cathodoluminescence measurements, the diameter of dark spots (full width at half maximum [FWHM]) is observed to be 200–250 nm for GaN. It decreases by 30–60% for AlxGa1−xN with x ≈ 0.5. Furthermore, the dark spot diameter increases with increasing temperature from 83 to 300 K in AlGaN, whereas it decreases in GaN. Emission energy mappings around dark spots become less smooth and show sharper features on submicrometer scales at low temperature for AlGaN and, on the contrary, at high temperature for GaN. It is concluded that charge carrier localization dominates the temperature dependence of dark spot diameters and of the emission energy distribution around threading dislocations in AlGaN, whereas the temperature-dependent excitation volume in cathodoluminescence and charge carrier diffusion limited by phonon scattering are the dominant effects in GaN. Consequently, with increasing temperature, nonradiative recombination related to threading dislocations extends to wider regions in AlGaN, whereas it becomes spatially limited in GaN.
  • Item
    Dislocation and indium droplet related emission inhomogeneities in InGaN LEDs
    (Bristol : IOP Publ., 2021) van Deurzen, Len; Gómez Ruiz, Mikel; Lee, Kevin; Turski, Henryk; Bharadwaj, Shyam; Page, Ryan; Protasenko, Vladimir; Xing, Huili (Grace); Lähnemann, Jonas; Jena, Debdeep
    This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence and cathodoluminescence measurements, atomic force microscopy, scanning electron microscopy and hot wet potassium hydroxide etching, the identified inhomogeneities are found to fall in four categories. Labeled here as type I through IV, they are distinguishable by their size, density, energy, intensity, radiative and electronic characteristics and chemical etch pits which correlates them with dislocations. Type I exhibits a blueshift of about 120 meV for the InGaN quantum well emission attributed to a perturbation of the active region, which is related to indium droplets that form on the surface in the metal-rich InGaN growth condition. Specifically, we attribute the blueshift to a decreased growth rate of and indium incorporation in the InGaN quantum wells underneath the droplet which is postulated to be the result of reduced incorporated N species due to increased N2 formation. The location of droplets are correlated with mixed type dislocations for type I defects. Types II through IV are due to screw dislocations, edge dislocations, and dislocation bunching, respectively, and form dark spots due to leakage current and nonradiative recombination.