Search Results

Now showing 1 - 4 of 4
  • Item
    In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010
    (München : European Geopyhsical Union, 2014) Harris, E.; Sinha, B.; van Pinxteren, D.; Schneider, J.; Poulain, L.; Collett, J.; D'Anna, B.; Fahlbusch, B.; Foley, S.; Fomba, K.W.; George, C.; Gnauk, T.; Henning, S.; Lee, T.; Mertes, S.; Roth, A.; Stratmann, F.; Borrmann, S.; Hoppe, P.; Herrmann, H.
    In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO2 emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO2 and H2SO4 were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ34S of particulate sulfate to be resolved for particle size and type. The most important in-cloud SO2 oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H2SO4 (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO2 oxidation by H2O2 and direct uptake of H2SO4 (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.
  • Item
    Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales
    (München : European Geopyhsical Union, 2012) Werner, C.; Schnyder, H.; Cunt, M.; Keitel, C.; Zeeman, M.J.; Dawson, T.E.; Badeck, F.-W.; Brugnoli, E.; Ghashghaie, J.; Grams, T.E.E.; Kayler, Z.E.; Lakatos, M.; Lee, X.; Máguas, C.; Ogée, J.; Rascher, K.G.; Siegwolf, R.T.W.; Unger, S.; Welker, J.; Wingate, L.; Gessler, A.
    Stable isotope analysis is a powerful tool for assessing plant carbon and water relations and their impact on biogeochemical processes at different scales. Our process-based understanding of stable isotope signals, as well as technological developments, has progressed significantly, opening new frontiers in ecological and interdisciplinary research. This has promoted the broad utilisation of carbon, oxygen and hydrogen isotope applications to gain insight into plant carbon and water cycling and their interaction with the atmosphere and pedosphere. Here, we highlight specific areas of recent progress and new research challenges in plant carbon and water relations, using selected examples covering scales from the leaf to the regional scale. Further, we discuss strengths and limitations of recent technological developments and approaches and highlight new opportunities arising from unprecedented temporal and spatial resolution of stable isotope measurements.
  • Item
    Detailed Fluid Inclusion and Stable Isotope Analysis on Deep Carbonates from the North Alpine Foreland Basin to Constrain Paleofluid Evolution
    (London : Hindawi, 2019) Mraz, Elena; Wolfgramm, Markus; Moeck, Inga; Thuro, Kurosch
    The recent interest on environmentally friendly energy resources has increased the economic interest on the Upper Jurassic carbonate rocks in the North Alpine Foreland Basin, which serves as a hydrogeothermal reservoir. An economic reservoir use by geothermal fluid extraction and injection requires a decent understanding of porosity–permeability evolution of the deep laying Upper Jurassic strata at depths greater than 2000 m. The analysis of paleofluids caught in cements of the rock mass helps to determine the postdepositional reservoir evolution and fluid migration. Therefore, the high- and low-permeability areas of the Upper Jurassic in the North Alpine Foreland Basin referred to as Molasse Basin were analyzed by means of encountered postdepositional cements to determine the reservoir evolution. The cements were sampled at different hydrocarbon and geothermal wells, as well as at outcrops in the Franconian and Swabian Alb. To determine the composition and temperature of the paleofluids, fluid inclusions and cements of the Upper Jurassic carbonate rocks were analyzed by microthermometry and stable isotope measurements. Since drill cuttings are a rather available sample material compared to drill cores, a new microthermometry measurement method was achieved for the around 1 mm drill cuttings. Salinity and formation temperature of paleofluids in fluid inclusions and isotope data are consistent with previous studies and reveal a 5-stage evolution: the main cementation phases are composed of (I) the early diagenesis in limestones (200-400 m, 40-50°C), (II) early diagenetic dolomitization, and (III) burial dolomitization (1-2 km, II: 40-90°C; III: 70-100°C; 40 g/L NaCl equiv.), and (IV) late burial calcification (IIIa: 110-140°C, IIIb: 140-200°C) linked to tectonic features in the Molasse Basin. In the outcrop samples, a subsequent (V) cementation phase was determined controlled by karstification. In the southwest, an increase in salinity of the fluid inclusions in vein calcites, above the salinity of the Jurassic seawater, highlights the influence of basin fluids (diagenetic, evaporitic). In the other eastern wells, vein calcites have precipitated from a low saline fluid of around 10-20 g/L NaCl equiv. The low salinity and the isotope values support the theory of a continuous influence of descending meteoric fluids. Consequently, the Upper Jurassic seawater has been diluted by a meteoric fluid to a low saline fluid (<1 g/L), especially in areas with high permeability. Here, we show how a better understanding of cementation trajectory at depth can help to generate a better understanding of geothermal usability in deep carbonate reservoirs.
  • Item
    Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial
    (München : European Geopyhsical Union, 2011) Robinson, A.; Calov, R.; Ganopolski, A.
    Using a new approach to force an ice sheet model, we performed an ensemble of simulations of the Greenland Ice Sheet evolution during the last two glacial cycles, with emphasis on the Eemian Interglacial. This ensemble was generated by perturbing four key parameters in the coupled regional climate-ice sheet model and by introducing additional uncertainty in the prescribed "background" climate change. The sensitivity of the surface melt model to climate change was determined to be the dominant driver of ice sheet instability, as reflected by simulated ice sheet loss during the Eemian Interglacial period. To eliminate unrealistic parameter combinations, constraints from present-day and paleo information were applied. The constraints include (i) the diagnosed present-day surface mass balance partition between surface melting and ice discharge at the margin, (ii) the modeled present-day elevation at GRIP; and (iii) the modeled elevation reduction at GRIP during the Eemian. Using these three constraints, a total of 360 simulations with 90 different model realizations were filtered down to 46 simulations and 20 model realizations considered valid. The paleo constraint eliminated more sensitive melt parameter values, in agreement with the surface mass balance partition assumption. The constrained simulations resulted in a range of Eemian ice loss of 0.4–4.4 m sea level equivalent, with a more likely range of about 3.7–4.4 m sea level if the GRIP δ18O isotope record can be considered an accurate proxy for the precipitation-weighted annual mean temperatures.