Search Results

Now showing 1 - 3 of 3
  • Item
    Low-Temperature Magnetothermodynamics Performance of Tb1-xErxNi2 Laves-Phases Compounds for Designing Composite Refrigerants
    (Basel : MDPI, 2022) Ćwik, Jacek; Koshkid’ko, Yurii; Nenkov, Konstantin; Tereshina-Chitrova, Evgenia; Weise, Bruno; Kowalska, Karolina
    In this paper, the results of heat capacity measurements performed on the polycrystalline Tb1-xErxNi2 intermetallic compounds with x = 0.25, 0.5 and 0.75 are presented. The Debye temperatures and lattice contributions as well as the magnetic part of the heat capacity were determined and analyzed. The heat capacity measurements reveal that the substitution of Tb atoms for Er atoms leads to a linear reduction of the Curie temperatures in the investigated compounds. The ordering temperatures decrease from 28.3 K for Tb0.25Er0.75Ni2 to 12.9 K for Tb0.75Er0.25Ni2. Heat capacity measurements enabled us to calculate with good approximation the isothermal magnetic entropy ΔSmag and adiabatic temperature changes ΔTad for Tb1-xErxNi2, for the magnetic field value equal to 1 T and 2 T. The optimal molar ratios of individual Tb0.75Er0.25Ni2, Tb0.5Er0.5Ni2 and Tb0.25Er0.75Ni2 components in the final composite were theoretically determined. According to the obtained results, the investigated composites make promising candidates that can find their application as an active body in a magnetic refrigerator performing an Ericsson cycle at low temperatures. Moreover, for the Tb0.5Er0.5Ni2 compound, direct measurements of adiabatic temperature change in the vicinity of the Curie temperature in the magnetic field up to 14 T were performed. The obtained high-field results are compared to the data for the parent TbNi2 and ErNi2 compounds, and their magnetocaloric properties near the Curie temperature are analyzed in the framework of the Landau theory for the second-order phase transitions.
  • Item
    The 2022 magneto-optics roadmap
    (Bristol : IOP Publ., 2022-09-28) Kimel, Alexey; Zvezdin, Anatoly; Sharma, Sangeeta; Shallcross, Samuel; de Sousa, Nuno; García-Martín, Antonio; Salvan, Georgeta; Hamrle, Jaroslav; Stejskal, Ondřej; McCord, Jeffrey; Tacchi, Silvia; Carlotti, Giovanni; Gambardella, Pietro; Salis, Gian; Münzenberg, Markus; Schultze, Martin; Temnov, Vasily; Bychkov, Igor V.; Kotov, Leonid N.; Maccaferri, Nicolò; Ignatyeva, Daria; Belotelov, Vladimir; Donnelly, Claire; Rodriguez, Aurelio Hierro; Matsuda, Iwao; Ruchon, Thierry; Fanciulli, Mauro; Sacchi, Maurizio; Du, Chunhui Rita; Wang, Hailong; Armitage, N. Peter; Schubert, Mathias; Darakchieva, Vanya; Liu, Bilu; Huang, Ziyang; Ding, Baofu; Berger, Andreas; Vavassori, Paolo
    Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today's magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future.
  • Item
    Role of disorder when upscaling magnetocaloric Ni-Co-Mn-Al Heusler alloys from thin films to ribbons
    (London : Nature Publishing Group, 2018) Weise, B.; Dutta, B.; Teichert, N.; Hütten, A.; Hickel, T.; Waske, A.
    Research in functional magnetic materials often employs thin films as model systems for finding new chemical compositions with promising properties. However, the scale-up of thin films towards bulk-like structures is challenging, since the material synthesis conditions are entirely different for thin films and e.g. rapid quenching methods. As one of the consequences, the type and degree of order in thin films and melt-spun ribbons are usually different, leading to different magnetic properties. In this work, using the example of magnetocaloric Ni-Co-Mn-Al melt-spun ribbons and thin films, we show that the excellent functional properties of the films can be reproduced also in ribbons, if an appropriate heat treatment is applied, that installs the right degree of order in the ribbons. We show that some chemical disorder is needed to get a pronounced and sharp martensitic transition. Increasing the order with annealing improves the magnetic properties only up to a point where selected types of disorder survive, which in turn compromise the magnetic properties. These findings allow us to understand the impact of the type and degree of disorder on the functional properties, paving the way for a faster transfer of combinatorial thin film research towards bulk-like materials for magnetic Heusler alloys.