Search Results

Now showing 1 - 2 of 2
  • Item
    On the electrolyte convection around a hydrogen bubble evolving at a microelectrode under the influence of a magnetic field
    (Pennington, NJ : ECS, 2016) Baczyzmalski, Dominik; Karnbach, Franziska; Yang, Xuegeng; Mutschke, Gerd; Uhlemann, Margitta; Eckert, Kerstin; Cierpka, Christian
    Water electrolysis was carried out in a 1 M H2SO4 solution under different potentiostatic conditions in the presence of a magnetic field oriented normal to the horizontal microelectrode (100 μm in diameter). The imposed magnetohydrodynamic (MHD) electrolyte flow around the evolving hydrogen bubble was studied to clarify the effect on the detachment of the bubble from the electrode and the mass transfer toward the electrode. Different particle imaging and tracking techniques were applied to measure the three-dimensional flow in the bulk of the cell as well as in close vicinity of the evolving bubble. The periodic bubble growth cycle was analyzed by measurements of the current oscillations and microscopic high-speed imaging. In addition, a numerical study of the flow was conducted to support the experimental results. The results demonstrate that the MHD flow imposes only a small stabilizing force on the bubble. However, the observed secondary flow enhances the mass transfer toward the electrode and may reduce the local supersaturation of dissolved hydrogen.
  • Item
    Kinetic slow mode-type solitons
    (Göttingen : Copernicus GmbH, 2005) Baumgärtel, K.; Sauer, K.; Dubinin, E.
    One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25) and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 200; Stasiewicz, 2004) against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.