Search Results

Now showing 1 - 2 of 2
  • Item
    Organic Light-Emitting Diodes Based on Conjugation-Induced Thermally Activated Delayed Fluorescence Polymers: Interplay Between Intra- and Intermolecular Charge Transfer States
    (Lausanne : Frontiers Media, 2019) Li, Yungui; Wei, Qiang; Cao, Liang; Fries, Felix; Cucchi, Matteo; Wu, Zhongbin; Scholz, Reinhard; Lenk, Simone; Voit, Brigitte; Ge, Ziyi; Reineke, Sebastian
    In this work, interactions between different host materials and a blue TADF polymer named P1 are systematically investigated. In photoluminescence, the host can have substantial impact on the photoluminescence quantum yield (PLQY) and the intensity of delayed fluorescence (ΦDF), where more than three orders of magnitude difference of ΦDF in various hosts is observed, resulting from a polarity effect of the host material and energy transfer. Additionally, an intermolecular charge-transfer (CT) emission with pronounced TADF characteristics is observed between P1 and 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), with a singlet-triplet splitting of 7 meV. It is noted that the contribution of harvested triplets in monochrome organic light-emitting diodes (OLEDs) correlates with ΦDF. For devices based on intermolecular CT-emission, the harvested triplets contribute ~90% to the internal quantum efficiency. The results demonstrate the vital importance of host materials on improving the PLQY and sensitizing ΦDF of TADF polymers for efficient devices. Solution-processed polychrome OLEDs with a color close to a white emission are presented, with the emission of intramolecular (P1) and intermolecular TADF (PO-T2T:P1). © Copyright © 2019 Li, Wei, Cao, Fries, Cucchi, Wu, Scholz, Lenk, Voit, Ge and Reineke.
  • Item
    Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device
    (Weinheim : Wiley-VCH, 2020) Zheng, Yichu; Fischer, Axel; Sawatzki, Michael; Doan, Duy Hai; Liero, Matthias; Glitzky, Annegret; Reineke, Sebastian; Mannsfeld, Stefan C.B.
    In recent decades, organic memory devices have been researched intensely and they can, among other application scenarios, play an important role in the vision of an internet of things. Most studies concentrate on storing charges in electronic traps or nanoparticles while memory types where the information is stored in the local charge up of an integrated capacitance and presented by capacitance received far less attention. Here, a new type of programmable organic capacitive memory called p-i-n-metal-oxide-semiconductor (pinMOS) memory is demonstrated with the possibility to store multiple states. Another attractive property is that this simple, diode-based pinMOS memory can be written as well as read electrically and optically. The pinMOS memory device shows excellent repeatability, an endurance of more than 104 write-read-erase-read cycles, and currently already over 24 h retention time. The working mechanism of the pinMOS memory under dynamic and steady-state operations is investigated to identify further optimization steps. The results reveal that the pinMOS memory principle is promising as a reliable capacitive memory device for future applications in electronic and photonic circuits like in neuromorphic computing or visual memory systems. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim