Search Results

Now showing 1 - 2 of 2
  • Item
    An investigation on effectiveness of temperature treatment for fluorine-based reactive plasma jet machining of N-BK7®
    (Hoboken, NJ : Wiley Interscience, 2020) Kazemi, Faezeh; Boehm, Georg; Arnold, Thomas
    In this study, a fluorine-based reactive plasma jet is investigated as a promising tool for ultraprecise surface machining of N-BK7®. Plasma-generated particles react with an N-BK7 surface to create volatile and nonvolatile compounds. The desorption of volatile compounds results in an etched surface, whereas nonvolatile compounds form a residual layer in the etched area, causing unpredictable effects on the etching rate. Surface temperature treatment is proposed to improve the machining procedure with respect to deterministic material removal, leading to predictable results. It is shown that, at an elevated surface temperature, the residual layer properties are modified in favor of improved etching performance. The etching behavior of N-BK7 is compared with fused silica to verify the optimality of the obtained results.
  • Item
    Etching of silicon surfaces using atmospheric plasma jets
    (Bristol : IOP Publ., 2015) Paetzelt, H.; Böhm, G.; Arnold, T.
    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min−1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets.