Search Results

Now showing 1 - 10 of 12
  • Item
    Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: A laboratory study
    (München : European Geopyhsical Union, 2012) Wagner, R.; Ajtai, T.; Kandler, K.; Lieke, K.; Linke, C.; Müller, T.; Schnaiter, M.; Vragel, M.
    We have retrieved the wavelength-dependent imaginary parts of the complex refractive index for five different Saharan dust aerosol particles of variable mineralogical composition at wavelengths between 305 and 955 nm. The dust particles were generated by dispersing soil samples into a laboratory aerosol chamber, typically yielding particle sizes with mean diameters ranging from 0.3 to 0.4 μm and maximum diameters from 2 to 4 μm. The extinction and absorption coefficients as well as the number size distribution of the dust particles were simultaneously measured by various established techniques. An inversion scheme based on a spheroidal dust model was employed to deduce the refractive indices. The retrieved imaginary parts of the complex refractive index were in the range from 0.003 to 0.005, 0.005 to 0.011, and 0.016 to 0.050 at the wavelengths 955, 505, and 305 nm. The hematite content of the dust particles was determined by electron-microscopical single particle analysis. Hematite volume fractions in the range from 1.1 to 2.7% were found for the different dusts, a range typical for atmospheric mineral dust. We have performed a sensitivity study to assess how accurately the retrieved imaginary refractive indices could be reproduced by calculations with mixing rule approximations using the experimentally determined hematite contents as input.
  • Item
    Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece
    (München : European Geopyhsical Union, 2012) Mamouri, R.E.; Papayannis, A.; Amiridis, V.; Müller, D.; Kokkalis, P.; Rapsomanikis, S.; Karageorgos, E.T.; Tsaknakis, G.; Nenes, A.; Kazadzis, S.; Remoundaki, E.
    A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single-scattering albedo ω) and mean complex refractive index (m)) at selected heights in the 2–3 km height region. We found that reff was 0.14–0.4 (±0.14) μm, ω was 0.63–0.88 (±0.08) (at 532 nm) and m ranged from 1.44 (±0.10) + 0.01 (±0.01)i to 1.55 (±0.12) + 0.06 (±0.02)i, in good agreement (only for the reff values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.
  • Item
    The influence of dust optical properties on the colour of simulated MSG-SEVIRI Desert Dust infrared imagery
    (Katlenburg-Lindau : EGU, 2018) Banks, Jamie R.; Schepanski, Kerstin; Heinold, Bernd; Hünerbein, Anja; Brindley, Helen E.
    Satellite imagery of atmospheric mineral dust is sensitive to the optical properties of the dust, governed by the mineral refractive indices, particle size, and particle shape. In infrared channels the imagery is also sensitive to the dust layer height and to the surface and atmospheric environment. Simulations of mineral dust in infrared "Desert Dust" imagery from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) have been performed, using the COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) dust transport model and the Radiative Transfer for TOVS (RTTOV) program, in order to investigate the sensitivity of the imagery to assumed dust properties. This paper introduces the technique and performs initial validation and comparisons with SEVIRI measurements over North Africa for daytime hours during 6 months covering June and July of 2011–2013. Using T-matrix scattering theory and assuming the dust particles to be spherical or spheroidal, wavelength- and size-dependent dust extinction values are calculated for a number of different dust refractive index databases, along with several values of the particle aspect ratio, denoting the particle shape. The consequences for the infrared extinction values of both the particle shape and the particle orientation are explored: this analysis shows that as the particle asphericity increases, the extinctions increase if the particles are aligned horizontally, and decrease if they are aligned vertically. Randomly oriented spheroidal particles have very similar infrared extinction properties as spherical particles, whereas the horizontally and vertically aligned particles can be considered to be the upper and lower bounds on the extinction values. Inputting these values into COSMO-MUSCAT-RTTOV, it is found that spherical particles do not appear to be sufficient to describe fully the resultant colour of the dust in the infrared imagery. Comparisons of SEVIRI and simulation colours indicate that of the dust types tested, the dust refractive index dataset produced by Volz (1973) shows the most similarity in the colour response to dust in the SEVIRI imagery, although the simulations have a smaller range of colour than do the observations. It is also found that the thermal imagery is most sensitive to intermediately sized particles (radii between 0.9 and 2.6 µm): larger particles are present in too small a concentration in the simulations, as well as with insufficient contrast in extinction between wavelength channels, to have much ability to perturb the resultant colour in the SEVIRI dust imagery.
  • Item
    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010
    (München : European Geopyhsical Union, 2011) Schumann, U.; Weinzierl, B.; Reitebuch, O.; Schlager, H.; Minikin, A.; Forster, C.; Baumann, R.; Sailer, T.; Graf, K.; Mannstein, H.; Voigt, C.; Rahm, S.; Simmet, R.; Scheibe, M.; Lichtenstern, M.; Stock, P.; Rüba, H.; Schäuble, D.; Tafferner, A.; Rautenhaus, M.; Gerz, T.; Ziereis, H.; Krautstrunk, M.; Mallaun, C.; Gayet, J.-F.; Lieke, K.; Kandler, K.; Ebert, M.; Weinbruch, S.; Stohl, A.; Gasteiger, J.; Groß, S.; Freudenthaler, V.; Wiegner, M.; Ansmann, A.; Tesche, M.; Olafsson, H.; Sturm, K.
    Airborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm−3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m−3. The Falcon flew in ash clouds up to about 0.8 mg m−3 for a few minutes and in an ash cloud with approximately 0.2 mg m−3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m−3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240–1600) kg s−1. The volcano induced about 10 (2.5–50) Tg of distal ash mass and about 3 (0.6–23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.
  • Item
    The Global Polarity of Alcoholic Solvents and Water – Importance of the Collectively Acting Factors Density, Refractive Index and Hydrogen Bonding Forces
    (Weinheim : Wiley-VCH-Verl., 2022) Spange, Stefan; Weiß, Nadine; Mayerhöfer, Thomas G.
    The DHBD quantity represents the hydroxyl group density of alcoholic solvents or water. DHBD is purely physically defined by the product of molar concentration of the solvent (N) and the factor Σn=n×f which reflects the number n and position (f-factor) of the alcoholic OH groups per molecule. Whether the hydroxyl group is either primary, secondary or tertiary is taken into account by f. Σn is clearly linearly correlated with the physical density or the refractive index of the alcohol derivative. Relationships of solvent-dependent UV/Vis absorption energies as ET(30) values, 129Xe NMR shifts and kinetic data of 2-chloro-2-methylpropane solvolysis with DHBD are demonstrated. It can be shown that the ET(30) solvent parameter reflects the global polarity of the hydrogen bond network rather than specific H-bond acidity. Significant correlations of the log k1 rate constants of the solvolysis reaction of 2-chloro-2-methylpropane with DHBD show the physical reasoning of the approach.
  • Item
    Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene
    (München : European Geopyhsical Union, 2015) Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Monod, A.; Temime-Roussel, B.; Decorse, P.; Mangeney, C.; Doussin, J.F.
    Secondary organic aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber. The SOA formation and aging were studied by following their optical, hygroscopic and chemical properties. The optical properties were investigated by determining the particle complex refractive index (CRI). The hygroscopicity was quantified by measuring the effect of relative humidity (RH) on the particle size (size growth factor, GF) and on the scattering coefficient (scattering growth factor, f(RH)). The oxygen to carbon atomic ratios (O : C) of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition during their formation and aging in CESAM. The real CRI at 525 nm wavelength decreased from 1.43–1.60 (±0.02) to 1.32–1.38 (±0.02) during the SOA formation. The decrease in the real CRI correlated to the O : C decrease from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF remained roughly constant over the reaction time, with values of 1.02–1.07 (±0.02) at 90% (±4.2%) RH. Simultaneous measurements of O : C of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but contained less oxidised species at the surface which may limit water absorption. In addition, an apparent change in both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 14 h of reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.
  • Item
    Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: Effects of ozone, light and temperature
    (München : European Geopyhsical Union, 2015) Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Camredon, M.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Temime-Roussel, B.; Monod, A.; Aumont, B.; Doussin, J.F.
    A series of experiments was conducted in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber to investigate the evolution of the physical and chemical properties of secondary organic aerosols (SOAs) during different forcings. The present experiments represent a first attempt to comprehensively investigate the influence of oxidative processing, photochemistry, and diurnal temperature cycling upon SOA properties. SOAs generated from the ozonolysis of α-pinene were exposed under dry conditions (< 1% relative humidity) to (1) elevated ozone concentrations, (2) light (under controlled temperature conditions) or (3) light and heat (6 °C light-induced temperature increase), and the resultant changes in SOA optical properties (i.e. absorption and scattering), hygroscopicity and chemical composition were measured using a suite of instrumentation interfaced to the CESAM chamber. The complex refractive index (CRI) was derived from integrated nephelometer measurements of 525 nm wavelength, using Mie scattering calculations and measured number size distributions. The particle size growth factor (GF) was measured with a hygroscopic tandem differential mobility analyzer (H-TDMA). An aerosol mass spectrometer (AMS) was used for the determination of the f44 / f43 and O : C ratio of the particles bulk. No change in SOA size or chemical composition was observed during O3 and light exposure at constant temperature; in addition, GF and CRI of the SOA remained constant with forcing. On the contrary, illumination of SOAs in the absence of temperature control led to an increase in the real part of the CRI from 1.35 (±0.03) to 1.49 (±0.03), an increase of the GF from 1.04 (±0.02) to 1.14 (±0.02) and an increase of the f44 / f43 ratio from 1.73 (±0.03) to 2.23 (±0.03). The simulation of the experiments using the master chemical mechanism (MCM) and the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) shows that these changes resulted from the evaporation of semi-volatile and less oxidized SOA species induced by the relatively minor increases in temperature (~ 6 °C). These surprising results suggest that α-pinene–O3 SOA properties may be governed more by local temperature fluctuations than by oxidative processing and photochemistry.
  • Item
    Modelling lidar-relevant optical properties of complex mineral dust aerosols
    (Milton Park : Taylor & Francis, 2017) Gasteiger, Josef; Wiegner, Matthias; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Tesche, Matthias; Kandler, Konrad
    We model lidar-relevant optical properties of mineral dust aerosols and compare the modelling results with optical properties derived from lidar measurements during the SAMUM field campaigns. The Discrete Dipole Approximation is used for optical modelling of single particles. For modelling of ensemble properties, the desert aerosol type of the OPAC aerosol dataset is extended by mixtures of absorbing and non-absorbing irregularly shaped mineral dust particles. Absorbing and non-absorbing particles are mixed to mimic the natural mineralogical inhomogeneity of dust particles. A sensitivity study reveals that the mineralogical inhomogeneity is critical for the lidar ratio at short wavelengths; it has to be considered for agreement with the observed wavelength dependence of the lidar ratio. The amount of particles with low aspect ratios (about 1.4 and lower) affects the lidar ratio at any lidar wavelength; their amount has to be low for agreement with SAMUM observations. Irregularly shaped dust particles with typical refractive indices, in general, have higher linear depolarization ratios than corresponding spheroids, and improve the agreement with the observations.
  • Item
    Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Particle chemistry, shape, mixing state and complex refractive index
    (Milton Park : Taylor & Francis, 2017) Kandler, K.; Lieke, K.; Benker, N.; Emmel, C.; Küpper, M.; Müller-Ebert, D.; Ebert, M.; Scheuvens, D.; Schladitz, A.; Schütz, L.; Weinbruch, S.
    A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in January and February 2008. The aerosol at Praia is a superposition of mineral dust, sea-salt, sulphates and soot. Particles smaller than 500 nm are mainly mineral dust, mineral dust–sulphate mixtures, sulphates and soot–sulphate mixtures. Particles larger then 2.5μm consist of mineral dust, sea-salt and few mineral dust–sulphate mixtures. A transition range exists in between. The major internal mixtures are mineral dust–sulphate and soot–sulphate. Mineral dust–sea-salt mixtures occur occasionally, mineral dust–soot mixtures were not observed. The aspect ratio was 1.3–1.4 for dry particles smaller than 500 nm and 1.6–1.7 for larger ones. Parameterizations are given for dry and humid state. Although the real part of the refractive index showed low variation (1.55–1.58 at 532 nm), a multi-modal imaginary part was detected as function of particle size, reflecting the complex composition. Soot mainly influences the absorption for wavelengths longer than the haematite absorption edge, whereas for shorter wavelengths dust is dominating. The refractive index of the aerosol depends on the source region of the mineral dust and on the presence/absence of a marine component.
  • Item
    Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications
    (Milton Park : Taylor & Francis, 2017) Wiegner, M.; Gasteiger, J.; Kandler, K.; Weinzierl, B.; Rasp, K.; Esselborn, M.; Freudenthaler, V.; Heese, B.; Toledano, C.; Tesche, M.; Althausen, D.
    In the framework of the Saharan Mineral Dust Experiment (SAMUM) for the first time the spectral dependence of particle linear depolarization ratios was measured by combining four lidar systems. In this paper these measurements are compared with results from scattering theory based on the T-matrix method. For this purpose, in situ measurements—size distribution, shape distribution and refractive index—were used as input parameters; particle shape was approximated by spheroids. A sensitivity study showed that lidar-related parameters—lidar ratio Sp and linear depolarization ratio δp—are very sensitive to changes of all parameters. The simulated values of the δp are in the range of 20% and 31% and thus in the range of the measurements. The spectral dependence is weak, so that it could not be resolved by the measurements. Calculated lidar ratios based on the measured microphysics and considering equivalent radii up to 7.5μm show a range of possible values between 29 and 50 sr at λ = 532 nm. Larger Sp might be possible if the real part of the refractive index is small and the imaginary part is large. A strict validation was however not possible as too many microphysical parameters influence Sp and δp that could not be measured with the required accuracy.