Search Results

Now showing 1 - 4 of 4
  • Item
    Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia)
    (London : Taylor & Francis, 2021) Bolch, Tobias; Duethmann, Doris; Wortmann, Michel; Liu, Shiyin; Disse, Markus
    Tarim River basin is the largest endorheic river basin in China. Due to the extremely arid climate the water supply solely depends on water originating from the glacierised mountains with about 75% stemming from the transboundary Aksu River. The water demand is linked to anthropogenic (specifically agriculture) and natural ecosystems, both competing for water. Ongoing climate change significantly impacts the cryosphere. The mass balance of the glaciers in Aksu River basin was clearly negative since 1975. The discharge of the Aksu headwaters has been increasing over the last decades mainly due to the glacier contribution. The average glacier melt contribution to total runoff is 30–37% with an estimated glacier imbalance contribution of 8–16%. Modelling using future climate scenarios indicate a glacier area loss of at least 50% until 2100. River discharge will first increase concomitant with glacier shrinkage until about 2050, but likely decline thereafter. The irrigated area doubled in the Aksu region between the early 1990s and 2020, causing at least a doubling of water demand. The current water surplus is comparable to the glacial runoff. Hence, even if the water demand will not grow further in the future a significant water shortage can be expected with declining glacial runoff. However, with the further expansion of irrigated agriculture and related industries, the water demand is expected to even further increase. Both improved discharge projections and planning of efficient and sustainable water use are necessary for further socioeconomic development in the region along with the preservation of natural ecosystems.
  • Item
    Sources of uncertainty in hydrological climate impact assessment: A cross-scale study
    (Bristol : IOP Publishing, 2018) Hattermann, F.F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S.N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.
    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.
  • Item
    Asynchronous exposure to global warming: Freshwater resources and terrestrial ecosystems
    (Bristol : IOP Publishing, 2013) Gerten, Dieter; Beer, Christian; Ostberg, Sebastian; Heinke, Jens; Kowarsch, Martin; Kreft, Holger; Kundzewicz, Zbigniew W.; Rastgooy, Johann; Warren, Rachel; Schellnhuber, Hans Joachim
    This modelling study demonstrates at what level of global mean temperature rise (ΔTg) regions will be exposed to significant decreases of freshwater availability and changes to terrestrial ecosystems. Projections are based on a new, consistent set of 152 climate scenarios (eight ΔTg trajectories reaching 1.5–5 ° C above pre-industrial levels by 2100, each scaled with spatial patterns from 19 general circulation models). The results suggest that already at a ΔTg of 2 ° C and mainly in the subtropics, higher water scarcity would occur in >50% out of the 19 climate scenarios. Substantial biogeochemical and vegetation structural changes would also occur at 2 ° C, but mainly in subpolar and semiarid ecosystems. Other regions would be affected at higher ΔTg levels, with lower intensity or with lower confidence. In total, mean global warming levels of 2 ° C, 3.5 ° C and 5 ° C are simulated to expose an additional 8%, 11% and 13% of the world population to new or aggravated water scarcity, respectively, with >50% confidence (while ~1.3 billion people already live in water-scarce regions). Concurrently, substantial habitat transformations would occur in biogeographic regions that contain 1% (in zones affected at 2 ° C), 10% (3.5 ° C) and 74% (5 ° C) of present endemism-weighted vascular plant species, respectively. The results suggest nonlinear growth of impacts along with ΔTg and highlight regional disparities in impact magnitudes and critical ΔTg levels.
  • Item
    Future Hydroclimatic Impacts on Africa: Beyond the Paris Agreement
    (Hoboken, NJ : Wiley-Blackwell, 2019) Piemontese, Luigi; Fetzer, Ingo; Rockström, Johan; Jaramillo, Fernando
    Projections of global warming in Africa are generally associated with increasing aridity and decreasing water availability. However, most freshwater assessments focus on single hydroclimatic indicators (e.g., runoff, precipitation, or aridity), lacking analysis on combined changes in evaporative demand, and water availability on land. There remains a high degree of uncertainty over water implications at the basin scale, in particular for the most water-consuming sector—food production. Using the Budyko framework, we perform an assessment of future hydroclimatic change for the 50 largest African basins, finding a consistent pattern of change in four distinct regions across the two main emission scenarios corresponding to the Paris Agreement, and the business as usual. Although the Paris Agreement is likely to lead to less intense changes when compared to the business as usual, both scenarios show the same pattern of hydroclimatic shifts, suggesting a potential roadmap for hydroclimatic adaptation. We discuss the social-ecological implications of the projected hydroclimatic shifts in the four regions and argue that climate policies need to be complemented by soil and water conservation practices to make the best use of future water resources. ©2019. The Authors.