Search Results

Now showing 1 - 3 of 3
  • Item
    Stationary particle currents in sedimenting active matter wetting a wall
    ([Ithaca, NY] : Arxiv.org, 2024) Mangeat, Matthieu; Chakraborty, Shaur; Wysocki, Adam; Rieger, Heiko
    Recently it was predicted, on the basis of a lattice gas model, that scalar active matter in a gravitational field would rise against gravity up a confining wall or inside a thin capillary - in spite of repulsive particle-wall interactions [Phys. Rev. Lett. 124, 048001 (2020)]. In this paper we confirm this prediction with sedimenting active Brownian particles (ABPs) in a box numerically and elucidate the mechanism leading to the formation of a meniscus rising above the bulk of the sedimentation region. The height of the meniscus increases with the activity of the system, algebraically with the Péclet number. The formation of the meniscus is determined by a stationary circular particle current, a vortex, centered at the base of the meniscus, whose size and strength increase with the ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs in a box: already the stationary state of ideal (non-interacting) ABPs without gravitation displays circular currents that arrange in a highly symmetric way in the eight octants of the box. Gravitation distorts this vortex configuration downward, leaving two major vortices at the two side walls, with a strong downward flow along the walls. Repulsive interactions between the ABPs change this situation only as soon as motility induced phase separation (MIPS) sets in and forms a dense, sedimented liquid region at the bottom, which pushes the center of the vortex upwards towards the liquid-gas interface. Self-propelled particles therefore represent an impressive realization of scalar active matter that forms stationary particle currents being able to perform visible work against gravity or any other external field, which we predict to be observable experimentally in active colloids under gravitation.
  • Item
    Significance of Elastic Coupling for Stresses and Leakage in Frictional Contacts
    ([Ithaca, NY] : Arxiv.org, 2023) Müller, Christian; Müser, Martin H.; Carbone, Giuseppe; Menga, Nicola
    We study how the commonly neglected coupling of normal and in-plane elastic response affects tribological properties when Hertzian or randomly rough indenters slide past an elastic body. Compressibility-induced coupling is found to substantially increase maximum tensile stresses, which cause materials to fail, and to decrease friction such that Amontons law is violated macroscopically even when it holds microscopically. Confinement-induced coupling increases friction and enlarges domains of high tension. Moreover, both types of coupling affect the gap topography and thereby leakage. Thus, coupling can be much more than a minor perturbation of a mechanical contact.
  • Item
    Topotaxis of Active Particles Induced by Spatially Heterogeneous Sliding along Obstacles
    (Ithaca, NY : Cornell University, 2023) Sadjadi, Zeinab; Rieger, Heiko
    Many biological active agents respond to gradients of environmental cues by redirecting their motion. Besides the well-studied prominent examples such as photo- and chemotaxis, there has been considerable recent interest in topotaxis, i.e.\ the ability to sense and follow topographic environmental cues. We numerically investigate the topotaxis of active agents moving in regular arrays of circular pillars. While a trivial topotaxis is achievable through a spatial gradient of obstacle density, here we show that imposing a gradient in the characteristics of agent-obstacle interaction can lead to an effective topotaxis in an environment with a spatially uniform density of obstacles. As a proof of concept, we demonstrate how a gradient in the angle of sliding around pillars -- as e.g.\ observed in bacterial dynamics near surfaces -- breaks the spatial symmetry and biases the direction of motion. We provide an explanation for this phenomenon based on effective reflection at the imaginary interface between pillars with different sliding angles. Our results are of technological importance for design of efficient taxis devices.