Search Results

Now showing 1 - 3 of 3
  • Item
    A higher gradient theory of mixtures for multi-component materials with numerical examples for binary alloys
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Böhme, Thomas; Dreyer, Wolfgang; Duderstadt, Frank; Müller, Wolfgang H.
    A theory of mixture for multi-component materials is presented based on a novel, straightforward method for the exploitation of the Second Law of thermodynamics. In particular the constitutive equations for entropy, heat and diffusion flux as well as the stress tensor are formulated as a consequence of the non-negative entropy production. Furthermore we derive the established Gibbs equation as well as the Gibbs Duhem relation which also follow from the formalism. Moreover, it is illustrated, how local mechanical strains due to eigenstrains or external loadings, modify the free energy and, consequently, change the chemical potentials of the components. All consecutive steps are illustrated, first, for simple mixtures and, second, for a system containing two different phases. So-called higher gradients of the concentrations are considered, which take the nonuniform composition into account. It will also become apparent that more/other variables of modified/different physical pr oblems beyond the illustrated ones can be easily treated within the presented framework. This work ends with the specification to binary alloys and with the presentation of various numerical simulations.
  • Item
    Hysteresis in the context of hydrogen storage and lithium-ion batteries
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Guhlke, Clemens; Huth, Robert
    The processes of reversible storage of hydrogen in a metal by loading and unloading and of charging and discharging of lithium-ion batteries have many things in common. The both processes are accompanied by a phase transition and loading and unloading run along different paths, so that hysteretic behavior is observed. For hydrogen storage we consider a fine powder of magnesium (Mg) particles and lithium storage is studied for iron phosphate (FePO_4) particles forming the cathode of a lithium-ion battery. The mathematical models that are established in citeDGJ08 and citeDGH09a, describe phase transitions and hysteresis exclusively in a single particle and on that basis they can predict the observed hysteretic plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. However, measurements reveal that this is qualitatively not reflected by the mentioned hysteretic plots of loading and unloading. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation will be resolved in this article. It will be shown that if each of the individual particles homogeneously distributes the supplied matter, nevertheless the many particle ensemble exhibits phase transition and hysteresis, because one of the two phases is realized in some part of the particles while the remaining part is in the other phase.
  • Item
    Rational modeling of electrochemical double layers in thermodynamic non-equilibrium
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger
    We consider the contact between an electrolyte and a solid electrode. At first we formulate a thermodynamic consistent model that resolves boundary layers at interfaces. The model includes charge transport, diffusion, chemical reactions, viscosity, elasticity and polarization under isothermal conditions. There is a coupling between these phenomena that particularly involves the local pressure in the electrolyte. Therefore the momentum balance is of major importance for the correct description of the layers. The width of the boundary layers is typically very small compared to the macroscopic dimensions of the system. In a second step we thus apply the method of asymptotic analysis to derive a simpler reduced model that does not resolve the boundary layers but instead incorporates the electrochemical properties of the layers into a set of new boundary conditions. For a metal-electrolyte interface, we derive a qualitative description of the double layer capacitance without the need to resolve space charge layers.