Search Results

Now showing 1 - 6 of 6
  • Item
    On the existence of generalized solutions to a spatio-temporal predator-prey system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Hömberg, Dietmar; Lasarzik, Robert; Plato, Luisa
    In this paper we consider a pair of coupled non-linear partial differential equations describing the interaction of a predator-prey pair. We introduce a concept of generalized solutions and show the existence of such solutions in all space dimension with the aid of a regularizing term, that is motivated by overcrowding phenomena. Additionally, we prove the weak-strong uniqueness of these generalized solutions and the existence of strong solutions at least locally-in-time for space dimension two and three.
  • Item
    Weak-strong uniqueness for measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank free energy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Lasarzik, Robert
    We analyze the EricksenLeslie system equipped with the OseenFrank energy in three space dimensions. Recently, the author introduced the concept of measure-valued solutions to this system and showed the global existence of these generalized solutions. In this paper, we show that suitable measure-valued solutions, which fulfill an associated energy inequality, enjoy the weak-strong uniqueness property, i. e. the measure-valued solution agrees with a strong solution if the latter exists. The weak-strong uniqueness is shown by a relative energy inequality for the associated nonconvex energy functional.
  • Item
    Weak-strong uniqueness for energy-reaction-diffusion systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Hopf, Katharina
    We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consistent models, and their formal entropy structure allows us to use as a key tool a suitably adjusted relative entropy method. Weak-strong uniqueness is obtained for general entropy-dissipating reactions without growth restrictions, and certain models with a non-integrable diffusive flux. The results also apply to a class of (isoenergetic) reaction-cross-diffusion systems.
  • Item
    Weak solutions and weak-strong uniqueness for a thermodynamically consistent phase-field model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Lasarzik, Robert; Rocca, Elisabetta; Schimperna, Giulio
    In this paper we prove the existence of weak solutions for a thermodynamically consistent phase-field model introduced in [26] in two and three dimensions of space. We use a notion of solution inspired by [18], where the pointwise internal energy balance is replaced by the total energy inequality complemented with a weak form of the entropy inequality. Moreover, we prove existence of local-in-time strong solutions and, finally, we show weak-strong uniqueness of solutions, meaning that every weak solution coincides with a local strong solution emanating from the same initial data, as long as the latter exists.
  • Item
    Weak entropy solutions to a model in induction hardening, existence and weak-strong uniqueness
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hömberg, Dietmar; Lasarzik, Robert
    In this paper, we investigate a model describing induction hardening of steel. The related system consists of an energy balance, an ODE for the different phases of steel, and Maxwell's equations in a potential formulation. The existence of weak entropy solutions is shown by a suitable regularization and discretization technique. Moreover, we prove the weak-strong uniqueness of these solutions, i.e., that a weak entropy solutions coincides with a classical solution emanating form the same initial data as long as the classical one exists. The weak entropy solution concept has advantages in comparison to the previously introduced weak solutions, e.g., it allows to include free energy functions with low regularity properties corresponding to phase transitions.
  • Item
    Weak-strong uniqueness and energy-variational solutions for a class of viscoelastoplastic fluid models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Eiter, Thomas; Hopf, Katharina; Lasarzik, Robert
    We study a model for a fluid showing viscoelastic and viscoplastic behavior, which describes the flow in terms of the fluid velocity and an internal stress. This stress tensor is transported via the Zaremba--Jaumann rate, and it is subject to two dissipation processes: one induced by a nonsmooth convex potential and one by stress diffusion. We show short-time existence of strong solutions as well as their uniqueness in a class of Leray--Hopf type weak solutions satisfying the tensorial component in the sense of an evolutionary variational inequality. The global-in-time existence of such generalized solutions has been established in a previous work. We further study the limit when stress diffusion vanishes. In this case, the above notion of generalized solutions is no longer suitable, and we introduce the concept of energy-variational solutions, which is based on an inequality for the relative energy. We derive general properties of energy-variational solutions and show their existence by passing to the non-diffusive limit in the relative energy inequality satisfied by generalized solutions for non-zero stress diffusion.