Search Results

Now showing 1 - 3 of 3
  • Item
    Evaluation of long-range transport and deposition of desert dust with the CTM MOCAGE
    (Milton Park : Taylor & Francis, 2017) Martet, M.; Peuch, V-H.; Laurent, B.; Marticorena, B.; Bergametti, G.
    Desert dust modelling and forecasting attract growing interest, due to the numerous impacts of dusts on climate, numerical weather prediction, health, ecosystems, transportation, as well as on many industrial activities. The validation of numerical tools is a very important activity in this context, and we present here an example of such an effort, combining in situ (horizontal visibility in SYNOP messages, IMPROVE database) and remote-sensing data (satellite imagery, AERONET aerosol optical thickness data). Interestingly, these measurements are available routinely, and not only in the context of dedicated measurements campaign; thus, they can be used in an operational context to monitor the performances of operational forecasting systems. MOCAGE is the chemistry-transport model of Météo-France, used operationally to forecast the three-dimensional transport of dusts and their deposition. Two very long-range transport episodes of dust have been studied: one case of Saharan dust transported to East America through Asia and Pacific observed in November 2004 and one case of Saharan dust transported from West Africa to Caribbean Islands in May 2007. Episodes of geographical extension had seldom been studied, and they provide a very selective reference to compare the modelled desert dusts with. The representation of dusts in MOCAGE appears to be realistic in these two very different cases. In turn, the model simulations are used to make the link between the complementary information provided by the different measurements tools, providing a fully consistent picture of the entire episodes. The evolution of the aerosol size distribution during the episodes has also been studied. With no surprise, our study underlines that deposition processes are very sensitive to the size of dust particles. If the atmospheric cycle, in terms of mass, is very much under the influence of larger particles (some micrometres and above), only the finer particles actually travel over thousands of kilometres. This illustrates the need for an accurate representation of size distributions for this aerosol component in numerical models and advocates for using a size-resolved (bin) approach as sinks, and particularly, deposition do not affect the emitted log-normal distributions symmetrically on both sides of the median diameter. Overall, the results presented in this study provide an evaluation of Météo-France operational dust forecasting system MOCAGE.
  • Item
    Development of a numerical workflow based on μ-CT imaging for the determination of capillary pressure–saturation-specific interfacial area relationship in 2-phase flow pore-scale porous-media systems: a case study on Heletz sandstone
    (Göttingen : Copernicus Publ., 2016) Peche, Aaron; Halisch, Matthias; Bogdan Tatomir, Alexandru; Sauter, Martin
    In this case study, we present the implementation of a finite element method (FEM)-based numerical pore-scale model that is able to track and quantify the propagating fluid–fluid interfacial area on highly complex micro-computed tomography (μ-CT)-obtained geometries. Special focus is drawn to the relationship between reservoir-specific capillary pressure (pc), wetting phase saturation (Sw) and interfacial area (awn). The basis of this approach is high-resolution μ-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated 2-phase flow model is based on the Navier–Stokes equations, including the surface tension force, in order to consider capillary effects for the computation of flow and the phase-field method for the emulation of a sharp fluid–fluid interface. In combination with specialized software packages, a complex high-resolution modelling domain can be obtained. A numerical workflow based on representative elementary volume (REV)-scale pore-size distributions is introduced. This workflow aims at the successive modification of model and model set-up for simulating, such as a type of 2-phase problem on asymmetric μ-CT-based model domains. The geometrical complexity is gradually increased, starting from idealized pore geometries until complex μ-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore-size distribution. Finally, the model can be applied to a complex μ-CT-based model domain and the pc–Sw–awn relationship can be computed.
  • Item
    Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications
    (Milton Park : Taylor & Francis, 2017) Wiegner, M.; Gasteiger, J.; Kandler, K.; Weinzierl, B.; Rasp, K.; Esselborn, M.; Freudenthaler, V.; Heese, B.; Toledano, C.; Tesche, M.; Althausen, D.
    In the framework of the Saharan Mineral Dust Experiment (SAMUM) for the first time the spectral dependence of particle linear depolarization ratios was measured by combining four lidar systems. In this paper these measurements are compared with results from scattering theory based on the T-matrix method. For this purpose, in situ measurements—size distribution, shape distribution and refractive index—were used as input parameters; particle shape was approximated by spheroids. A sensitivity study showed that lidar-related parameters—lidar ratio Sp and linear depolarization ratio δp—are very sensitive to changes of all parameters. The simulated values of the δp are in the range of 20% and 31% and thus in the range of the measurements. The spectral dependence is weak, so that it could not be resolved by the measurements. Calculated lidar ratios based on the measured microphysics and considering equivalent radii up to 7.5μm show a range of possible values between 29 and 50 sr at λ = 532 nm. Larger Sp might be possible if the real part of the refractive index is small and the imaginary part is large. A strict validation was however not possible as too many microphysical parameters influence Sp and δp that could not be measured with the required accuracy.