Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Random walk on random walks: Higher dimensions

2017, Blondel, Oriane, Hilário, Marcelo R., Santos, Renato Soares dos, Sidoravicius, Vladas, Teixeira, Augusto

We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels without the assumption of uniform ellipticity or nearest-neighbour jumps. Specifically, we obtain a strong law of large numbers, a functional central limit theorem and large deviation estimates for the position of the random walker under the annealed law in a high density regime. The main obstacle is the intrinsic lack of monotonicity in higher-dimensional, non-nearest neighbour settings. Here we develop more general renormalization and renewal schemes that allow us to overcome this issue. As a second application of our methods, we provide an alternative proof of the ballistic behaviour of the front of (the discrete-time version of) the infection model introduced in [23].

Loading...
Thumbnail Image
Item

Random walk on random walks: Low densities

2017, Blondel, Oriane, Hilário, Marcelo R., Santos, Renato dos, Sidoravicius, Vladas, Teixeira, Augusto

We consider a random walker in a dynamic random environment given by a system of independent simple symmetric random walks. We obtain ballisticity results under two types of perturbations: low particle density, and strong local drift on particles. Surprisingly, the random walker may behave very differently depending on whether the underlying environment particles perform lazy or non-lazy random walks, which is related to a notion of permeability of the system. We also provide a strong law of large numbers, a functional central limit theorem and large deviation bounds under an ellipticity condition.