Search Results

Now showing 1 - 10 of 40
  • Item
    Jewellery from tessellations of hyperbolic space
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2022) Gangl, Herbert
    In this snapshot, we will first give an introduction to hyperbolic geometry and we will then show how certain matrix groups of a number-theoretic origin give rise to a large variety of interesting tessellations of 3-dimensional hyperbolic space. Many of the building blocks of these tessellations exhibit beautiful symmetry and have inspired the design of 3D printed jewellery.
  • Item
    Polyhedra and commensurability
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2016) Guglielmetti, Rafael; Jacquement, Matthieu
    This snapshot introduces the notion of commensurability of polyhedra. At its bottom, this concept can be developed from constructions with paper, scissors, and glue. Starting with an elementary example, we formalize it subsequently. Finally, we discuss intriguing connections with other fields of mathematics.
  • Item
    Ultrafilter methods in combinatorics
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2021) Goldbring, Isaac
    Given a set X, ultrafilters determine which subsets of X should be considered as large. We illustrate the use of ultrafilter methods in combinatorics by discussing two cornerstone results in Ramsey theory, namely Ramsey’s theorem itself and Hindman’s theorem. We then present a recent result in combinatorial number theory that verifies a conjecture of Erdos known as the “B + C conjecture”.
  • Item
    Arrangements of lines
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2014) Harbourne, Brian; Szemberg, Tomasz
    We discuss certain open problems in the context of arrangements of lines in the plane.
  • Item
    Profinite groups
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2016) Bartholdi, Laurent
    Profinite objects are mathematical constructions used to collect, in a uniform manner, facts about infinitely many finite objects. We shall review recent progress in the theory of profinite groups, due to Nikolov and Segal, and its implications for finite groups.
  • Item
    Computing with symmetries
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2018) Roney-Dougal, Colva M.
    Group theory is the study of symmetry, and has many applications both within and outside mathematics. In this snapshot, we give a brief introduction to symmetries, and how to compute with them.
  • Item
    A few shades of interpolation
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2017) Szpond, Justyna
    The topic of this snapshot is interpolation. In the ordinary sense, interpolation means to insert something of a different nature into something else. In mathematics, interpolation means constructing new data points from given data points. The new points usually lie in between the already-known points. The purpose of this snapshot is to introduce a particular type of interpolation, namely, polynomial interpolation. This will be explained starting from basic ideas that go back to the ancient Babylonians and Greeks, and will arrive at subjects of current research activity.
  • Item
    Searching for the Monster in the Trees
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2022) Craven, David A.
    The Monster finite simple group is almost unimaginably large, with about 8 × 1053 elements in it. Trying to understand such an immense object requires both theory and computer programs. In this snapshot, we discuss finite groups, representations, and finally Brauer trees, which offer some new understanding of this vast and intricate structure.
  • Item
    Snake graphs, perfect matchings and continued fractions
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2019) Schiffler, Ralf
    A continued fraction is a way of representing a real number by a sequence of integers. We present a new way to think about these continued fractions using snake graphs, which are sequences of squares in the plane. You start with one square, add another to the right or to the top, then another to the right or the top of the previous one, and so on. Each continued fraction corresponds to a snake graph and vice versa, via “perfect matchings” of the snake graph. We explain what this means and why a mathematician would call this a combinatorial realization of continued fractions.
  • Item
    News on quadratic polynomials
    (Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2017) Pottmeyer, Lukas
    Many problems in mathematics have remained unsolved because of missing links between mathematical disciplines, such as algebra, geometry, analysis, or number theory. Here we introduce a recently discovered result concerning quadratic polynomials, which uses a bridge between algebra and analysis. We study the iterations of quadratic polynomials, obtained by computing the value of a polynomial for a given number and feeding the outcome into the exact same polynomial again. These iterations of polynomials have interesting applications, such as in fractal theory.