Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

A quasi-incompressible diffuse interface model with phase transition

2012, Aki, Gonca, Dreyer, Wolfgang, Giesselmann, Jan, Kraus, Christine

This work introduces a new thermodynamically consistent diffuse model for two-component flows of incompressible fluids. For the introduced diffuse interface model, we investigate physically admissible sharp interface limits by matched asymptotic techniques. To this end, we consider two scaling regimes where in one case we recover the Euler equations and in the other case the Navier-Stokes equations in the bulk phases equipped with admissible interfacial conditions. For the Navier-Stokes regime, we further assume the densities of the fluids are close to each other in the sense of a small parameter which is related to the interfacial thickness of the diffuse model.

Loading...
Thumbnail Image
Item

Modelling compressible electrolytes with phase transition

2014, Dreyer, Wolfgang, Giesselmann, Jan, Kraus, Christiane

A novel thermodynamically consistent diffuse interface model is derived for compressible electrolytes with phase transitions. The fluid mixtures may consist of N constituents with the phases liquid and vapor, where both phases may coexist. In addition, all constituents may consist of polarizable and magnetizable matter. Our introduced thermodynamically consistent diffuse interface model may be regarded as a generalized model of Allen-Cahn/Navier-Stokes/Poisson type for multi-component flows with phase transitions and electrochemical reactions. For the introduced diffuse interface model, we investigate physically admissible sharp interface limits by matched asymptotic techniques. We consider two scaling regimes, i.e. a non-coupled and a coupled regime, where the coupling takes place between the smallness parameter in the Poisson equation and the width of the interface. We recover in the sharp interface limit a generalized Allen-Cahn/Euler/Poisson system for mixtures with electrochemical reactions in the bulk phases equipped with admissible interfacial conditions. The interfacial conditions satisfy, for instance, a generalized Gibbs-Thomson law and a dynamic Young-Laplace law.

Loading...
Thumbnail Image
Item

A compressible mixture model with phase transition

2013, Dreyer, Wolfgang, Giesselmann, Jan, Kraus, Christiane

We introduce a new thermodynamically consistent diffuse interface model of AllenCahn/NavierStokes type for multi-component flows with phase transitions and chemical reactions. For the introduced diffuse interface model, we investigate physically admissible sharp interface limits by matched asymptotic techniques. We consider two scaling regimes, i.e. a non-dissipative and a dissipative regime, where we recover in the sharp interface limit a generalized Allen-Cahn/Euler system for mixtures with chemical reactions in the bulk phases equipped with admissible interfacial conditions. The interfacial conditions satify, for instance, a YoungLaplace and a Stefan type law.