Search Results

Now showing 1 - 10 of 17
Loading...
Thumbnail Image
Item

Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces

2015, Oliveira, Myriano H., Jr., Lopes, Joao Marcelo J., Schumann, Timo, Galves, Lauren A., Ramsteiner, Manfred, Berlin, Katja, Trampert, Achim, Riechert, Henning

Scaling graphene down to nanoribbons is a promising route for the implementation of this material into devices. Quantum confinement of charge carriers in such nanostructures, combined with the electric field-induced break of symmetry in AB-stacked bilayer graphene, leads to a band gap wider than that obtained solely by this symmetry breaking. Consequently, the possibility of fabricating AB-stacked bilayer graphene nanoribbons with high precision is very attractive for the purposes of applied and basic science. Here we show a method, which includes a straightforward air annealing, for the preparation of quasi-free-standing AB-bilayer nanoribbons with different widths on SiC(0001). Furthermore, the experiments reveal that the degree of disorder at the edges increases with the width, indicating that the narrower nanoribbons are more ordered in their edge termination. In general, the reported approach is a viable route towards the large-scale fabrication of bilayer graphene nanostructures with tailored dimensions and properties for specific applications.

Loading...
Thumbnail Image
Item

Mapping the band structure of GeSbTe phase change alloys around the Fermi level

2018, Kellner, J., Bihlmayer, G., Liebmann, M., Otto, S., Pauly, C., Boschker, J.E., Bragaglia, V., Cecchi, S., Wang, R.N., Deringer, V.L., Küppers, P., Bhaskar, P., Golias, E., Sánchez-Barriga, J., Dronskowski, R., Fauster, T., Rader, O., Calarco, R., Morgenstern, M.

Phase change alloys are used for non-volatile random-access memories exploiting the conductivity contrast between amorphous and metastable, crystalline phase. However, this contrast has never been directly related to the electronic band structure. Here we employ photoelectron spectroscopy to map the relevant bands for metastable, epitaxial GeSbTe films. The constant energy surfaces of the valence band close to the Fermi level are hexagonal tubes with little dispersion perpendicular to the (111) surface. The electron density responsible for transport belongs to the tails of this bulk valence band, which is broadened by disorder, i.e., the Fermi level is 100 meV above the valence band maximum. This result is consistent with transport data of such films in terms of charge carrier density and scattering time. In addition, we find a state in the bulk band gap with linear dispersion, which might be of topological origin.

Loading...
Thumbnail Image
Item

Formation of resonant bonding during growth of ultrathin GeTe films

2017, Wang, Ruining, Zhang, Wei, Momand, Jamo, Ronneberger, Ider, Boschker, Jos E., Mazzarello, Riccardo, Kooi, Bart J., Riechert, Henning, Wuttig, Matthias, Calarco, Raffaella

A highly unconventional growth scenario is reported upon deposition of GeTe films on the hydrogen passivated Si(111) surface. Initially, an amorphous film forms for growth parameters that should yield a crystalline material. The entire amorphous film then crystallizes once a critical thickness of four GeTe bilayers is reached, subsequently following the GeTe(111) 

Loading...
Thumbnail Image
Item

Far-infrared and Raman spectroscopy investigation of phonon modes in amorphous and crystalline epitaxial GeTe-Sb2Te3 alloys

2016, Bragaglia, V., Holldack, K., Boschker, J.E., Arciprete, F., Zallo, E., Flissikowski, T., Calarco, R.

A combination of far-infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline ordered GeTe-Sb2Te3 alloys (GST) epitaxially grown on Si(111). The infrared active GST mode is not observed in the Raman spectra and vice versa, indication of the fact that inversion symmetry is preserved in the metastable cubic phase in accordance with the Fm3 space group. For the trigonal phase, instead, a partial symmetry break due to Ge/Sb mixed anion layers is observed. By studying the crystallization process upon annealing with both the techniques, we identify temperature regions corresponding to the occurrence of different phases as well as the transition from one phase to the next. Activation energies of 0.43 eV and 0.08 eV for the electron conduction are obtained for both cubic and trigonal phases, respectively. In addition a metal-insulator transition is clearly identified to occur at the onset of the transition between the disordered and the ordered cubic phase.

Loading...
Thumbnail Image
Item

Wavelength-tunable sources of entangled photons interfaced with atomic vapours

2016, Trotta, Rinaldo, Martín-Sánchez, Javier, Wildmann, Johannes S., Piredda, Giovanni, Reindl, Marcus, Schimpf, Christian, Zallo, Eugenio, Stroj, Sandra, Edlinger, Johannes, Rastelli, Armando

The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled photons. A single semiconductor quantum dot is one of the most attractive, as it can generate indistinguishable entangled photons deterministically and is compatible with current photonic-integration technologies. However, the lack of control over the energy of the entangled photons is hampering the exploitation of dissimilar quantum dots in protocols requiring the teleportation of quantum entanglement over remote locations. Here we introduce quantum dot-based sources of polarization-entangled photons whose energy can be tuned via three-directional strain engineering without degrading the degree of entanglement of the photon pairs. As a test-bench for quantum communication, we interface quantum dots with clouds of atomic vapours, and we demonstrate slow-entangled photons from a single quantum emitter. These results pave the way towards the implementation of hybrid quantum networks where entanglement is distributed among distant parties using optoelectronic devices.

Loading...
Thumbnail Image
Item

Spatially controlled epitaxial growth of 2D heterostructures via defect engineering using a focused He ion beam

2021, Heilmann, Martin, Deinhart, Victor, Tahraoui, Abbes, Höflich, Katja, Lopes, J. Marcelo J.

The combination of two-dimensional (2D) materials into heterostructures enables the formation of atomically thin devices with designed properties. To achieve a high-density, bottom-up integration, the growth of these 2D heterostructures via van der Waals epitaxy (vdWE) is an attractive alternative to the currently mostly employed mechanical transfer, which is problematic in terms of scaling and reproducibility. Controlling the location of the nuclei formation remains a key challenge in vdWE. Here, a focused He ion beam is used to deterministically place defects in graphene substrates, which serve as preferential nucleation sites for the growth of insulating, 2D hexagonal boron nitride (h-BN). Therewith a mask-free, selective-area vdWE (SAvdWE) is demonstrated, in which nucleation yield and crystal quality of h-BN are controlled by the ion beam parameters used for defect formation. Moreover, h-BN grown via SAvdWE is shown to exhibit electron tunneling characteristics comparable to those of mechanically transferred layers, thereby lying the foundation for a reliable, high-density array fabrication of 2D heterostructures for device integration via defect engineering in 2D substrates.

Loading...
Thumbnail Image
Item

Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin films

2016, Wang, Ruining, Campi, Davide, Bernasconi, Marco, Momand, Jamo, Kooi, Bart J., Verheijen, Marcel A., Wuttig, Matthias, Calarco, Raffaella

Using reflection high-energy electron diffraction (RHEED), the growth onset of molecular beam epitaxy (MBE) deposited germanium telluride (GeTe) film on Si(111)-(√3 × √3)R30°-Sb surfaces is investigated, and a larger than expected in-plane lattice spacing is observed during the deposition of the first two molecular layers. High-resolution transmission electron microscopy (HRTEM) confirms that the growth proceeds via closed layers, and that those are stable after growth. The comparison of the experimental Raman spectra with theoretical calculated ones allows assessing the shift of the phonon modes for a quasi-free-standing ultra-thin GeTe layer with larger in-plane lattice spacing. The manifestation of the latter phenomenon is ascribed to the influence of the interface and the confinement of GeTe within the limited volume of material available at growth onset, either preventing the occurrence of Peierls dimerization or their ordered arrangement to occur normally.

Loading...
Thumbnail Image
Item

Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves

2017, Foerster, Michael, Macià, Ferran, Statuto, Nahuel, Finizio, Simone, Hernández-Mínguez, Alberto, Lendínez, Sergi, Santos, Paulo V., Fontcuberta, Josep, Hernàndez, Joan Manel, Kläui, Mathias, Aballe, Lucia

The magnetoelastic effect—the change of magnetic properties caused by the elastic deformation of a magnetic material—has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magnetization dynamics of nanostructures at the picosecond time scale and found that magnetization modes have a delayed response to the strain modes, adjustable by the magnetic domain configuration. Our results provide fundamental insight into magnetoelastic coupling in nanostructures and have implications for the design of strain-controlled magnetostrictive nano-devices.

Loading...
Thumbnail Image
Item

Selective control of molecule charge state on graphene using tip-induced electric field and nitrogen doping

2019, Pham, Van Dong, Ghosh, Sukanya, Joucken, Frédéric, Pelaez-Fernandez, Mario, Repain, Vincent, Chacon, Cyril, Bellec, Amandine, Girard, Yann, Sporken, Robert, Rousset, Sylvie, Dappe, Yannick J., Narasimhan, Shobhana, Lagoute, Jérôme

The combination of graphene with molecules offers promising opportunities to achieve new functionalities. In these hybrid structures, interfacial charge transfer plays a key role in the electronic properties and thus has to be understood and mastered. Using scanning tunneling microscopy and ab initio density functional theory calculations, we show that combining nitrogen doping of graphene with an electric field allows for a selective control of the charge state in a molecular layer on graphene. On pristine graphene, the local gating applied by the tip induces a shift of the molecular levels of adsorbed molecules and can be used to control their charge state. Ab initio calculations show that under the application of an electric field, the hybrid molecule/graphene system behaves like an electrostatic dipole with opposite charges in the molecule and graphene sub-units that are found to be proportional to the electric field amplitude, which thereby controls the charge transfer. When local gating is combined with nitrogen doping of graphene, the charging voltage of molecules on nitrogen is greatly lowered. Consequently, applying the proper electric field allows one to obtain a molecular layer with a mixed charge state, where a selective reduction is performed on single molecules at nitrogen sites. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Observation of T2-like coherent optical phonons in epitaxial Ge2Sb2Te5/GaSb(001) films

2013, Shalini, A., Liu, Y., Al-Jarah, U.A.S., Srivastava, G.P., Wright, C.D., Katmis, F., Braun, W., Hicken, R.J.

The phonon spectrum of Ge2Sb2Te5 is a signature of its crystallographic structure and underlies the phase transition process used in memory applications. Epitaxial materials allow coherent optical phonons to be studied in femtosecond anisotropic reflectance measurements. A dominant phonon mode with frequency of 3.4 THz has been observed in epitaxial Ge2Sb2Te5 grown on GaSb(001). The dependence of signal strength upon pump and probe polarization is described by a theory of transient stimulated Raman scattering that accounts for the symmetry of the crystallographic structure through use of the Raman tensor. The 3.4 THz mode has the character of the 3 dimensional T2 mode expected for the Oh point group, confirming that the underlying crystallographic structure is cubic. New modes are observed in both Ge2Sb2Te5 and GaSb after application of large pump fluences, and are interpreted as 1 and 2 dimensional modes associated with segregation of Sb.