Search Results

Now showing 1 - 10 of 15
  • Item
    Bioinspired Polydopamine Coating as an Adhesion Enhancer Between Paraffin Microcapsules and an Epoxy Matrix
    (Washington, DC : ACS Publications, 2020) Fredi, Giulia; Simon, Frank; Sychev, Dmitrii; Melnyk, Inga; Janke, Andreas; Scheffler, Christina; Zimmerer, Cordelia
    Microencapsulated phase change materials (PCMs) are attracting increasing attention as functional fillers in polymer matrices, to produce smart thermoregulating composites for applications in thermal energy storage (TES) and thermal management. In a polymer composite, the filler–matrix interfacial adhesion plays a fundamental role in the thermomechanical properties. Hence, this work aims to modify the surface of commercial PCM microcapsules through the formation of a layer of polydopamine (PDA), a bioinspired polymer that is emerging as a powerful tool to functionalize chemically inert surfaces due to its versatility and great adhesive potential in many different materials. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) evidenced that after PDA coating, the surface roughness increased from 9 to 86 nm, which is beneficial, as it allows a further increase in the interfacial interaction by mechanical interlocking. Spectroscopic techniques allowed investigating the surface chemistry and identifying reactive functional groups of the PDA layer and highlighted that, unlike the uncoated microcapsules, the PDA layer is able to react with oxirane groups, thereby forming a covalent bond with the epoxy matrix. Hot-stage optical microscopy and differential scanning calorimetry (DSC) highlighted that the PDA modification does not hinder the melting/crystallization process of the paraffinic core. Finally, SEM micrographs of the cryofracture surface of epoxy composites containing neat or PDA-modified microcapsules clearly evidenced improved adhesion between the capsule shell and the epoxy matrix. These results showed that PDA is a suitable coating material with considerable potential for increasing the interfacial adhesion between an epoxy matrix and polymer microcapsules with low surface reactivity. This is remarkably important not only for this specific application but also for other classes of composite materials. Future studies will investigate how the deposition parameters affect the morphology, roughness, and thickness of the PDA layer and how the layer properties influence the capsule–matrix adhesion.
  • Item
    Surface, interphase and tensile properties of unsized, sized and heat treated basalt fibres
    (London [u.a.] : Institute of Physics, 2016) Förster, T.; Sommer, G.S.; Mäder, E.; Scheffler, C.
    Recycling of fibre reinforced polymers is in the focus of several investigations. Chemical and thermal treatments of composites are the common ways to separate the reinforcing fibres from the polymer matrices. However, most sizings on glass and basalt fibre are not designed to resist high temperatures. Hence, a heat treatment might also lead to a sizing removal, a decrease of mechanical performance and deterioration in fibre-matrix adhesion. Different basalt fibres were investigated using surface analysis methods as well as single fibre tensile tests and single fibre pull-out tests in order to reveal the possible causes of these issues. Heat treatment in air reduced the fibre tensile strength in the same level like heat treatment in nitrogen atmosphere, but it influenced the wetting capability. Re-sizing by a coupling agent slightly increased the adhesion strength and reflected a decreased post-debonding friction.
  • Item
    Local delivery to malignant brain tumors: potential biomaterial-based therapeutic/adjuvant strategies
    (Cambridge : RSC, 2021) Alghamdi, Majed; Gumbleton, Mark; Newland, Ben
    Glioblastoma (GBM) is the most aggressive malignant brain tumor and is associated with a very poor prognosis. The standard treatment for newly diagnosed patients involves total tumor surgical resection (if possible), plus irradiation and adjuvant chemotherapy. Despite treatment, the prognosis is still poor, and the tumor often recurs within two centimeters of the original tumor. A promising approach to improving the efficacy of GBM therapeutics is to utilize biomaterials to deliver them locally at the tumor site. Local delivery to GBM offers several advantages over systemic administration, such as bypassing the blood-brain barrier and increasing the bioavailability of the therapeutic at the tumor site without causing systemic toxicity. Local delivery may also combat tumor recurrence by maintaining sufficient drug concentrations at and surrounding the original tumor area. Herein, we critically appraised the literature on local delivery systems based within the following categories: polymer-based implantable devices, polymeric injectable systems, and hydrogel drug delivery systems. We also discussed the negative effect of hypoxia on treatment strategies and how one might utilize local implantation of oxygen-generating biomaterials as an adjuvant to enhance current therapeutic strategies. © 2021 The Royal Society of Chemistry.
  • Item
    Charged polymers transport under applied electric fields in periodic channels
    (Basel : MDPI AG, 2013) Nedelcu, S.; Sommer, J.-U.
    By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects.
  • Item
    Liquid sensing: Smart polymer/CNT composites
    (Amsterdam [u.a.] : Elsevier, 2011) Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P.
    Today polymer/carbon nanotube (CNT) composites can be found in sports equipment, cars, and electronic devices. The growth of old and new markets in this area has been stimulated by our increased understanding of relevant production and processing methods, as well as the considerable price reduction of industrial CNT grades. In particular, CNT based electrically conductive polymer composites (CPCs) offer a range of opportunities because of their unique property profile; they demonstrate low specific gravity in combination with relatively good mechanical properties and processability. The electrical conductivity of polymer/CNT composites results from a continuous filler network that can be affected by various external stimuli, such as temperature shifts, mechanical deformations, and the presence of gases and vapors or solvents. Accordingly, CNT based CPCs represent promising candidates for the design of smart components capable of integrated monitoring. In this article we focus on their use as leakage detectors for organic solvents.
  • Item
    Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials
    (New York, NY [u.a.] : Elsevier, 2011) Nandan, B.; Kuila, B.K.; Stamm, M.
    Self-assembled polymeric systems have played an important role as templates for nanofabrication; they offer nanotemplates with different morphologies and tunable sizes, are easily removed after reactions, and could be further modified with different functional groups to enhance the interactions. Among the various self-assembled polymeric systems, block copolymer supramolecular assemblies have received considerable attention because of the inherent processing advantages. These supramolecular assemblies are formed by the non-covalent interactions of one of the blocks of the block copolymer with a low molar-mass additive. Selective extraction of the additive leads to porous membranes or nano-objects which could then be used as templates for nanofabrication leading to a variety of ordered organic/inorganic nanostructures. In this feature article, we present an over-view of the recent developments in this area with a special focus on some examples from our group.
  • Item
    Polymerization driven monomer passage through monolayer chemical vapour deposition graphene
    ([London] : Nature Publishing Group UK, 2018-10-3) Zhang, Tao; Liao, Zhongquan; Sandonas, Leonardo Medrano; Dianat, Arezoo; Liu, Xiaoling; Xiao, Peng; Amin, Ihsan; Gutierrez, Rafael; Chen, Tao; Zschech, Ehrenfried; Cuniberti, Gianaurelio; Jordan, Rainer
    Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-assembled initiator monolayer in a monomer solution with single-layer graphene separating the initiator from the monomer. We demonstrate that neutral monomers are able to pass through the graphene (via native defects) and increase the graphene defects ratio (Raman ID/IG) from ca. 0.09 to 0.22. The translocations of anionic and cationic monomers through graphene are significantly slower due to chemical interactions of monomers with the graphene defects. Interestingly, if micropatterned initiator-monolayers are used, the translocations of anionic monomers apparently cut the graphene sheet into congruent microscopic structures. The varied interactions between monomers and graphene defects are further investigated by quantum molecular dynamics simulations.
  • Item
    Bio-responsive polymer hydrogels homeostatically regulate blood coagulation
    (London : Nature Publishing Group, 2013) Maitz, Manfred F.; Freudenberg, U.; Tsurkan, M.V.; Fischer, M.; Beyrich, T.; Werner, C.
    Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which - in turn - becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules.
  • Item
    Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells
    (Auckland : DOVE Medical Press, 2014) Woltmann, B.; Torger, B.; Müller, M.; Hempel, U.
    Background: Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles' composition and surface net charge. Materials and methods: Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs' physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5-50 nmol·cm-2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results: PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC-NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into "variant systems" featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and "invariant systems" lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC)-labeled PECNPs suggested internalization into hMSCs remaining stable for 8 days. Conclusion: Our study demonstrated that PECNP composition affects hMSC behavior. In particular, the PEI/CS system showed biocompatibility in a wide concentration range, representing a suitable system for local drug delivery from PECNP-functionalized bone substitute materials.
  • Item
    Thermophilic films and fibers from photo cross-linkable UCST-type polymers
    (Cambridge : RSC Publ., 2015) Liu, Fangyao; Jiang, Shaohua; Ionov, Leonid; Agarwal, Seema
    Photo cross-linkable thermoresponsive polymers of UCST-type based on acrylamide (AAm) and acrylonitrile (AN) useful for preparing thermophilic hydrogel films and fibers are presented. The polymers prepared via free radical and reversible addition fragmentation chain-transfer (RAFT) polymerization methods using N-(4-benzoylphenyl)acrylamide (BPAm) as photo cross-linkable comonomers provided highly stable UCST-type phase transition in water reproducible without hysteresis for many cycles. The cloud point could be manipulated by varying the acrylonitrile amount in the feed. Chemically cross-linked hydrogel films and nanofibers (average diameter 500 nm) were successfully prepared from the ter-copolymers by solution casting and electrospinning followed by UV irradiation. These hydrogels showed a continuous positive volume transition behavior in water with increasing temperature that was utilized for the design of microactuators.