Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Disturbing-free determination of yeast concentration in DI water and in glucose using impedance biochips

2020, Kiani, M., Du, N., Vogel, M., Raff, J., Hübner, U., Skorupa, I., Bürger, D., Schulz, S.E., Schmidt, O.G., Blaschke, D., Schmidt, H.

Deionized water and glucose without yeast and with yeast (Saccharomyces cerevisiae) of optical density OD600 that ranges from 4 to 16 has been put in the ring electrode region of six different types of impedance biochips and impedance has been measured in dependence on the added volume (20, 21, 22, 23, 24, 25 µL). The measured impedance of two out of the six types of biochips is strongly sensitive to the addition of both liquid without yeast and liquid with yeast and modelled impedance reveals a linear relationship between the impedance model parameters and yeast concentration. The presented biochips allow for continuous impedance measurements without interrupting the cultivation of the yeast. A multiparameter fit of the impedance model parameters allows for determining the concentration of yeast (cy) in the range from cy = 3.3 × 107 to cy = 17 × 107 cells/mL. This work shows that independent on the liquid, i.e., DI water or glucose, the impedance model parameters of the two most sensitive types of biochips with liquid without yeast and with liquid with yeast are clearly distinguishable for the two most sensitive types of biochips.

Loading...
Thumbnail Image
Item

Raman-spectroscopy based cell identification on a microhole array chip

2014, Neugebauer, U., Kurz, C., Bocklitz, T., Berger, T., Velten, T., Clement, J.H., Krafft, C., Popp, J.

Circulating tumor cells (CTCs) from blood of cancer patients are valuable prognostic markers and enable monitoring responses to therapy. The extremely low number of CTCs makes their isolation and characterization a major technological challenge. For label-free cell identification a novel combination of Raman spectroscopy with a microhole array platform is described that is expected to support high-throughput and multiplex analyses. Raman spectra were registered from regularly arranged cells on the chip with low background noise from the silicon nitride chip membrane. A classification model was trained to distinguish leukocytes from myeloblasts (OCI-AML3) and breast cancer cells (MCF-7 and BT-20). The model was validated by Raman spectra of a mixed cell population. The high spectral quality, low destructivity and high classification accuracy suggests that this approach is promising for Raman activated cell sorting.