Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Properties of the solutions of delocalised coagulation and inception problems with outflow boundaries

2015, Patterson, Robert I.A.

Well posedness is established for a family of equations modelling particle populations undergoing delocalised coagulation, advection, inflow and outflow in a externally specified velocity field. Very general particle types are allowed while the spatial domain is a bounded region of d-dimensional space for which every point lies on exactly one streamline associated with the velocity field. The problem is formulated as a semi-linear ODE in the Banach space of bounded measures on particle position and type space. A local Lipschitz property is established in total variation norm for the propagators (generalised semi-groups) associated with the problem and used to construct a Picard iteration that establishes local existence and global uniqueness for any initial condition. The unique weak solution is shown further to be a differentiable or at least bounded variation strong solution under smoothness assumptions on the parameters of the coagulation interaction. In the case of one spatial dimension strong differentiability is established even for coagulation parameters with a particular bounded variation structure in space. This one dimensional extension establishes the convergence of the simulation processes studied in [Patterson, textitStoch. Anal. Appl. 31, 2013] to a unique and differentiable limit.

Loading...
Thumbnail Image
Item

Stationary solutions to an energy model for semiconductor devices where the equations are defined on different domains

2006, Glitzky, Annegret, Hünlich, Rolf

We discuss a stationary energy model from semiconductor modelling. We accept the more realistic assumption that the continuity equations for electrons and holes have to be considered only in a subdomain $Omega_0$ of the domain of definition $Omega$ of the energy balance equation and of the Poisson equation. Here $Omega_0$ corresponds to the region of semiconducting material, $OmegasetminusOmega_0$ represents passive layers. Metals serving as contacts are modelled by Dirichlet boundary conditions. We prove a local existence and uniqueness result for the two-dimensional stationary energy model. For this purpose we derive a $W^1,p$-regularity result for solutions of systems of elliptic equations with different regions of definition and use the Implicit Function Theorem.

Loading...
Thumbnail Image
Item

Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations

2019, Emmrich, Etienne, Lasarzik, Robert

A nonlinear model due to Soddemann et al. [37] and Stewart [38] describing incompressible smectic-A liquid crystals under flow is studied. In comparison to previously considered models, this particular model takes into account possible undulations of the layers away from equilibrium, which has been observed in experiments. The emerging decoupling of the director and the layer normal is incorporated by an additional evolution equation for the director. Global existence of weak solutions to this model is proved via a Galerkin approximation with eigenfunctions of the associated linear differential operators in the three-dimensional case.

Loading...
Thumbnail Image
Item

Nonlocal isoperimetric problems

2014, Castro, Agnese di, Novaga, Matteo, Ruffini, Berardo, Valdinoci, Enrico

We characterize the volume-constrained minimizers of a nonlocal free energy given by the difference of fractional perimeters. Exploiting the quantitative fractional isoperimetric inequality, we show that balls are the unique minimizers if the volume is sufficiently small, while the existence vs. nonexistence of minimizers for large volumes remains open. We also consider the corresponding isoperimetric problem and prove existence and regularity of minimizers.

Loading...
Thumbnail Image
Item

Measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank energy

2018, Lasarzik, Robert

In this article, we prove the existence of measure-valued solutions to the EricksenLeslie system equipped with the OseenFrank energy. We introduce the concept of generalized gradient Young measures. Via a Galerkin approximation, we show the existence of weak solutions to a regularized system and attain measure-valued solutions for vanishing regularization. Additionally, it is shown that the measure-valued solution fulfills an energy inequality.

Loading...
Thumbnail Image
Item

Analysis of a spin-polarized drift-diffusion model

2008, Glitzky, Annegret

We introduce a spin-polarized drift-diffusion model for semiconductor spintronic devices. This coupled system of continuity equations and a Poisson equation with mixed boundary conditions in all equations has to be considered in heterostructures. We give a weak formulation of this problem and prove an existence and uniqueness result for the instationary problem. If the boundary data is compatible with thermodynamic equilibrium the free energy along the solution decays monotonously and exponentially to its equilibrium value. In other cases it may be increasing but we estimate its growth. Moreover we give upper and lower estimates for the solution.

Loading...
Thumbnail Image
Item

Existence of bounded steady state solutions to spin-polarized drift-diffusion systems

2008, Glitzky, Annegret, Gärtner, Klaus

We study a stationary spin-polarized drift-diffusion model for semiconductor spintronic devices. This coupled system of continuity equations and a Poisson equation with mixed boundary conditions in all equations has to be considered in heterostructures. In 3D we prove the existence and boundedness of steady states. If the Dirichlet conditions are compatible or nearly compatible with thermodynamic equilibrium the solution is unique. The same properties are obtained for a space discretized version of the problem: Using a Scharfetter-Gummel scheme on 3D boundary conforming Delaunay grids we show existence, boundedness and, for small applied voltages, the uniqueness of the discrete solution.

Loading...
Thumbnail Image
Item

Analysis of electronic models for solar cells including energy resolved defect densities

2010, Glitzky, Annegret

We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level.

Loading...
Thumbnail Image
Item

Leray--Hopf solutions to a viscoelastic fluid model with nonsmooth stress-strain relation

2021, Eiter, Thomas, Hopf, Katharina, Mielke, Alexander

We consider a fluid model including viscoelastic and viscoplastic effects. The state is given by the fluid velocity and an internal stress tensor that is transported along the flow with the Zaremba--Jaumann derivative. Moreover, the stress tensor obeys a nonlinear and nonsmooth dissipation law as well as stress diffusion. We prove the existence of global-in-time weak solutions satisfying an energy inequality under general Dirichlet conditions for the velocity field and Neumann conditions for the stress tensor.

Loading...
Thumbnail Image
Item

An electronic model for solar cells including active interfaces and energy resolved defect densities

2011, Glitzky, Annegret

We introduce an electronic model for solar cells taking into account heterostructures with active interfaces and energy resolved volume and interface trap densities. The model consists of continuity equations for electrons and holes with thermionic emission transfer conditions at the interface and of ODEs for the trap densities with energy level and spatial position as parameters, where the right hand sides contain generation-recombination as well as ionization reactions. This system is coupled with a Poisson equation for the electrostatic potential. We show the thermodynamic correctness of the model and prove a priori estimates for the solutions to the evolution system. Moreover, existence and uniqueness of weak solutions of the problem are proven. For this purpose we solve a regularized problem and verify bounds of the corresponding solution not depending on the regularization level.