Search Results

Now showing 1 - 2 of 2
  • Item
    Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Bartels, Sören; Müller, Rüdiger
    A fully computable upper bound for the finite element approximation error of Allen-Cahn and Cahn-Hilliard equations with logarithmic potentials is derived. Numerical experiments show that for the sharp interface limit this bound is robust past topological changes. Modifications of the abstract results to derive quasi-optimal error estimates in different norms for lowest order finite element methods are discussed and lead to weaker conditions on the residuals under which the conditional error estimates hold.
  • Item
    Well-posedness and optimal control for a Cahn--Hilliard--Oono system with control in the mass term
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    The paper treats the problem of optimal distributed control of a Cahn--Hilliard--Oono system in Rd, 1 ≤ d ≤ 3 with the control located in the mass term and admitting general potentials that include both the case of a regular potential and the case of some singular potential. The first part of the paper is concerned with the dependence of the phase variable on the control variable. For this purpose, suitable regularity and continuous dependence results are shown. In particular, in the case of a logarithmic potential, we need to prove an ad hoc strict separation property, and for this reason we have to restrict ourselves to the case d = 2. In the rest of the work, we study the necessary first-order optimality conditions, which are proved under suitable compatibility conditions on the initial datum of the phase variable and the time derivative of the control, at least in case of potentials having unbounded domain