Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

On an application of Tikhonovs fixed point theorem to a nonlocal Cahn-Hilliard type system modeling phase separation

2015, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli in Ric. Mat. 55 (2006) 105-118. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter p and the chemical potential my. Singular contributions to the local free energy in the form of logarithmic or ouble-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonovs fixed point theorem in a rather unusual separable and reflexive Banach space.

Loading...
Thumbnail Image
Item

A degenerating Cahn-Hilliard system coupled with complete damage processes

2012, Heinemann, Christian, Kraus, Christiane

Complete damage in elastic solids appears when the material looses all its integrity due to high exposure. In the case of alloys, the situation is quite involved since spinodal decomposition and coarsening also occur at sufficiently low temperatures which may lead locally to high stress peaks. Experimental observations on solder alloys reveal void and crack growth especially at phase boundaries. In this work, we investigate analytically a degenerating PDE system with a time-depending domain for phase separation and complete damage processes under time-varying Dirichlet boundary conditions. The evolution of the system is described by a degenerating parabolic differential equation of fourth order for the concentration, a doubly nonlinear differential inclusion for the damage process and a degenerating quasi-static balance equation for the displacement field. All these equations are strongly nonlinearly coupled....

Loading...
Thumbnail Image
Item

A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions

2015, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

A boundary control problem for the pure Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first-order necessary conditions for optimality are proved.

Loading...
Thumbnail Image
Item

Existence results for diffuse interface models describing phase separation and damage

2010, Heinemann, Christian, Kraus, Christiane

In this paper we analytically investigate Cahn-Hilliard and Allen-Cahn systems which are coupled with elasticity and uni-directional damage processes. We are interested in the case where the free energy contains logarithmic terms of the chemical concentration variable and quadratic terms of the gradient of the damage variable. For elastic Cahn-Hilliard and Allen-Cahn systems coupled with uni-directional damage processes, an appropriate notion of weak solutions is presented as well as an existence result based on certain regularization methods and an higher integrability result for the strain Literaturverz.

Loading...
Thumbnail Image
Item

On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential

2014, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

The Cahn-Hilliard and viscous Cahn-Hilliard equations with singular and possibly nonsmooth potentials and dynamic boundary condition are considered and some well-posedness and regularity results are proved.

Loading...
Thumbnail Image
Item

Existence of weak solutions for the Cahn-Hilliard reaction model including elastic effects and damage

2016, Kraus, Christiane, Roggensack, Arne

In this paper, we introduce and study analytically a vectorial Cahn-Hilliard reaction model coupled with rate-dependent damage processes. The recently proposed Cahn-Hilliard reaction model can e.g. be used to describe the behavior of electrodes of lithium-ion batteries as it includes both the intercalation reactions at the surfaces and the separation into different phases. The coupling with the damage process allows considering simultaneously the evolution of a damage field, a second important physical effect occurring during the charging or discharging of lithium-ion batteries. Mathematically, this is realized by a Cahn-Larché system with a non-linear Newton boundary condition for the chemical potential and a doubly non-linear differential inclusion for the damage evolution. We show that this system possesses an underlying generalized gradient structure which incorporates the non-linear Newton boundary condition. Using this gradient structure and techniques from the field of convex analysis we are able to prove constructively the existence of weak solutions of the coupled PDE system.

Loading...
Thumbnail Image
Item

Modeling and analysis of a phase field system for damage and phase separation processes in solids

2013, Bonetti, Elena, Heinemann, Christian, Kraus, Christiane, Segatti, Antonio

In this work, we analytically investigate a multi-component system for describing phase separation and damage processes in solids. The model consists of a parabolic diffusion equation of fourth order for the concentration coupled with an elliptic system with material dependent coefficients for the strain tensor and a doubly nonlinear differential inclusion for the damage function. The main aim of this paper is to show existence of weak solutions for the introduced model, where, in contrast to existing damage models in the literature, different elastic properties of damaged and undamaged material are regarded. To prove existence of weak solutions for the introduced model, we start with an approximation system. Then, by passing to the limit, existence results of weak solutions for the proposed model are obtained via suitable variational techniques.

Loading...
Thumbnail Image
Item

Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage

2010, Heinemann, Christian, Kraus, Christiane

The Cahn-Hilliard model is a typical phase field approach for describing phase separation and coarsening phenomena in alloys. This model has been generalized to the so-called Cahn-Larché system by combining it with elasticity to capture non-neglecting deformation phenomena, which occurs during phase separation in the material. Evolving microstructures such as phase separation and coarsening processes have a strong influence on damage initiation and propagation in alloys. We develop the existing framework of Cahn-Hilliard and Cahn-Larché systems by coupling these systems with a unidirectional evolution inclusion for an internal variable, describing damage processes. After establishing a weak notion of the corresponding evolutionary system, we prove existence of weak solutions for rate-dependent damage processes under certain growth conditions of the energy functional

Loading...
Thumbnail Image
Item

Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects

2014, Heinemann, Christian, Kraus, Christiane

In this paper, we consider a coupled PDE system describing phase separation and damage phenomena in elastically stressed alloys in the presence of inertial effects. The material is considered on a bounded Lipschitz domain with mixed boundary conditions for the displacement variable. The main aim of this work is to establish existence of weak solutions for the introduced hyperbolic-parabolic system. To this end, we first adopt the notion of weak solutions introduced in [HK11]. Then we prove existence of weak solutions by means of regularization, time-discretization and different variational techniques.

Loading...
Thumbnail Image
Item

A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions

2014, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

A boundary control problem for the viscous Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first order necessary conditions for optimality are proved.