Search Results

Now showing 1 - 2 of 2
  • Item
    Nanostructured In3SbTe2 antennas enable switching from sharp dielectric to broad plasmonic resonances
    (Berlin : de Gruyter, 2022) Heßler, Andreas; Wahl, Sophia; Kristensen, Philip Trøst; Wuttig, Matthias; Busch, Kurt; Taubner, Thomas
    Phase-change materials (PCMs) allow for non-volatile resonance tuning of nanophotonic components. Upon switching, they offer a large dielectric contrast between their amorphous and crystalline phases. The recently introduced “plasmonic PCM” In3SbTe2 (IST) additionally features in its crystalline phase a sign change of its permittivity over a broad infrared spectral range. While optical resonance switching in unpatterned IST thin films has been investigated before, nanostructured IST antennas have not been studied, yet. Here, we present numerical and experimental investigations of nanostructured IST rod and disk antennas. By crystallizing the IST with microsecond laser pulses, we switched individual antennas from narrow dielectric to broad plasmonic resonances. For the rod antennas, we demonstrated a resonance shift of up to 1.2 µm (twice the resonance width), allowing on/off switching of plasmonic resonances with a contrast ratio of 2.7. With the disk antennas, we realized an increase of the resonance width by more than 800% from 0.24 µm to 1.98 µm while keeping the resonance wavelength constant. Further, we demonstrated intermediate switching states by tuning the crystallization depth within the resonators. Our work empowers future design concepts for nanophotonic applications like active spectral filters, tunable absorbers, and switchable flat optics.
  • Item
    Onset of charge interaction in strong-field photoemission from nanometric needle tips
    (Berlin : de Gruyter, 2021) Schötz, Johannes; Seiffert, Lennart; Maliakkal, Ancyline; Blöchl, Johannes; Zimin, Dmitry; Rosenberger, Philipp; Bergues, Boris; Hommelhoff, Peter; Krausz, Ferenc; Fennel, Thomas; Kling, Matthias F.
    Strong-field photoemission from nanostructures and the associated temporally modulated currents play a key role in the development of ultrafast vacuum optoelectronics. Optical light fields could push their operation bandwidth into the petahertz domain. A critical aspect of their functionality in the context of applications is the impact of charge interaction effects. Here, we investigated the photoemission and photocurrents from nanometric tungsten needle tips exposed to carrier-envelope phase (CEP)-controlled few-cycle laser fields. We report a characteristic rapid increase in the intensity-rescaled cutoff energies of emitted electrons beyond a certain intensity value. By comparison with simulations, we identify this feature as the onset of charge-interaction dominated photoemission dynamics. Our results are anticipated to be relevant also for the strong-field photoemission from other nanostructures, including photoemission from plasmonic nanobowtie antennas used in CEP-detection and for PHz-scale devices.