Search Results

Now showing 1 - 5 of 5
  • Item
    Energy system developments and investments in the decisive decade for the Paris Agreement goals
    (Bristol : IOP Publ., 2021-6-29) Bertram, Christoph; Riahi, Keywan; Hilaire, Jérôme; Bosetti, Valentina; Drouet, Laurent; Fricko, Oliver; Malik, Aman; Pupo Nogueira, Larissa; van der Zwaan, Bob; van Ruijven, Bas; van Vuuren, Detlef; Weitzel, Matthias; Dalla Longa, Francesco; de Boer, Harmen-Sytze; Emmerling, Johannes; Fosse, Florian; Fragkiadakis, Kostas; Harmsen, Mathijs; Keramidas, Kimon; Kishimoto, Paul Natsuo; Kriegler, Elmar; Krey, Volker; Paroussos, Leonidas; Saygin, Deger; Vrontisi, Zoi; Luderer, Gunnar
    The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.
  • Item
    Seasonal prediction of Indian summer monsoon onset with echo state networks
    (Bristol : IOP Publ., 2021-7-1) Mitsui, Takahito; Boers, Niklas
    Although the prediction of the Indian Summer Monsoon (ISM) onset is of crucial importance for water-resource management and agricultural planning on the Indian sub-continent, the long-term predictability—especially at seasonal time scales—is little explored and remains challenging. We propose a method based on artificial neural networks that provides skilful long-term forecasts (beyond 3 months) of the ISM onset, although only trained on short and noisy data. It is shown that the meridional tropospheric temperature gradient in the boreal winter season already contains the signals needed for predicting the ISM onset in the subsequent summer season. Our study demonstrates that machine-learning-based approaches can be simultaneously helpful for both data-driven prediction and enhancing the process understanding of climate phenomena.
  • Item
    Inventory reporting of livestock emissions: the impact of the IPCC 1996 and 2006 Guidelines
    (Bristol : IOP Publ., 2021-6-22) Amon, Barbara; Çinar, Gültaç; Anderl, Michael; Dragoni, Federico; Kleinberger-Pierer, Magdalena; Hörtenhuber, Stefan
    The livestock sector is a major contributor to agricultural greenhouse gas (GHG) and nitrogen (N) emissions and efforts are being made to reduce these emissions. National emission inventories are the main tool for reporting emissions. They have to be consistent, comparable, complete, accurate and transparent. The quality of emission inventories is affected by the reporting methodology, emission factors and knowledge of individual sources. In this paper, we investigate the effects of moving from the 1996 IPCC Guidelines for National Greenhouse Gas Inventories to the 2006 IPCC Guidelines on the emission estimates from the livestock sector. With Austria as a case study, we estimated the emissions according to the two guidelines, revealing marked changes in emission estimates from different source categories resulting from changes in the applied methodology. Overall estimated GHG emissions from the livestock sector decreased when applying the IPCC 2006 methodology, except for emissions from enteric fermentation. Our study revealed shifts in the relative importance of main emission sources. While the share of CH4 emissions from enteric fermentation and manure management increased, the share of N2O emissions from manure management and soils decreased. The most marked decrease was observed for the share of indirect N2O emissions. Our study reveals a strong relationship between the emission inventory methodology and mitigation options as mitigation measures will only be effective for meeting emission reduction targets if their effectiveness can be demonstrated in the national emission inventories. We include an outlook on the 2019 IPCC Refinement and its potential effects on livestock emissions estimates. Emission inventory reports are a potent tool to show the effect of mitigation measures and the methodology prescribed in inventory guidelines will have a distinct effect on the selection of mitigation measures.
  • Item
    The impact of COVID-19 lockdown measures on the Indian summer monsoon
    (Bristol : IOP Publ., 2021-7-16) Fadnavis, Suvarna; Sabin, T. P.; Rap, Alexandru; Müller, Rolf; Kubin, Anne; Heinold, Bernd
    Aerosol concentrations over Asia play a key role in modulating the Indian summer monsoon (ISM) rainfall. Lockdown measures imposed to prevent the spread of the COVID-19 pandemic led to substantial reductions in observed Asian aerosol loadings. Here, we use bottom-up estimates of anthropogenic emissions based on national mobility data from Google and Apple, along with simulations from the ECHAM6-HAMMOZ state-of-the-art aerosol-chemistry-climate model to investigate the impact of the reduced aerosol and gases pollution loadings on the ISM. We show that the decrease in anthropogenic emissions led to a 4 W m−2 increase in surface solar radiation over parts of South Asia, which resulted in a strengthening of the ISM. Simultaneously, while natural emission parameterizations are kept the same in all our simulations, the anthropogenic emission reduction led to changes in the atmospheric circulation, causing accumulation of dust over the Tibetan plateau (TP) during the pre-monsoon and monsoon seasons. This accumulated dust has intensified the warm core over the TP that reinforced the intensification of the Hadley circulation. The associated cross-equatorial moisture influx over the Indian landmass led to an enhanced amount of rainfall by 4% (0.2 mm d−1) over the Indian landmass and 5%–15% (0.8–3 mm d−1) over central India. These estimates may vary under the influence of large-scale coupled atmosphere–ocean oscillations (e.g. El Nino Southern Oscillation, Indian Ocean Dipole). Our study indicates that the reduced anthropogenic emissions caused by the unprecedented COVID-19 restrictions had a favourable effect on the hydrological cycle over South Asia, which has been facing water scarcity during the past decades. This emphasizes the need for stringent measures to limit future anthropogenic emissions in South Asia for protecting one of the world's most densely populated regions.
  • Item
    Carbon dioxide removal technologies are not born equal
    (Bristol : IOP Publ., 2021-7-1) Strefler, Jessica; Bauer, Nico; Humpenöder, Florian; Klein, David; Popp, Alexander; Kriegler, Elmar
    Technologies for carbon dioxide removal (CDR) from the atmosphere have been recognized as an important part of limiting warming to well below 2 °C called for in the Paris Agreement. However, many scenarios so far rely on bioenergy in combination with carbon capture and storage as the only CDR technology. Various other options have been proposed, but have scarcely been taken up in an integrated assessment of mitigation pathways. In this study we analyze a comprehensive portfolio of CDR options in terms of their regional and temporal deployment patterns in climate change mitigation pathways and the resulting challenges. We show that any CDR option with sufficient potential can reduce the economic costs of achieving the 1.5 °C target substantially without increasing the temperature overshoot. CDR helps to reduce net CO2 emissions faster and achieve carbon neutrality earlier. The regional distribution of CDR deployment in cost-effective mitigation pathways depends on which options are available. If only enhanced weathering of rocks on croplands or re- and afforestation are available, Latin America and Asia cover nearly all of global CDR deployment. Besides fairness and sustainability concerns, such a regional concentration would require large international transfers and thus strong international institutions. In our study, the full portfolio scenario is the most balanced from a regional perspective. This indicates that different CDR options should be developed such that all regions can contribute according to their regional potentials.