Search Results

Now showing 1 - 2 of 2
  • Item
    Carbon dioxide removal technologies are not born equal
    (Bristol : IOP Publ., 2021-7-1) Strefler, Jessica; Bauer, Nico; Humpenöder, Florian; Klein, David; Popp, Alexander; Kriegler, Elmar
    Technologies for carbon dioxide removal (CDR) from the atmosphere have been recognized as an important part of limiting warming to well below 2 °C called for in the Paris Agreement. However, many scenarios so far rely on bioenergy in combination with carbon capture and storage as the only CDR technology. Various other options have been proposed, but have scarcely been taken up in an integrated assessment of mitigation pathways. In this study we analyze a comprehensive portfolio of CDR options in terms of their regional and temporal deployment patterns in climate change mitigation pathways and the resulting challenges. We show that any CDR option with sufficient potential can reduce the economic costs of achieving the 1.5 °C target substantially without increasing the temperature overshoot. CDR helps to reduce net CO2 emissions faster and achieve carbon neutrality earlier. The regional distribution of CDR deployment in cost-effective mitigation pathways depends on which options are available. If only enhanced weathering of rocks on croplands or re- and afforestation are available, Latin America and Asia cover nearly all of global CDR deployment. Besides fairness and sustainability concerns, such a regional concentration would require large international transfers and thus strong international institutions. In our study, the full portfolio scenario is the most balanced from a regional perspective. This indicates that different CDR options should be developed such that all regions can contribute according to their regional potentials.
  • Item
    Negative emissions—Part 2: Costs, potentials and side effects
    (Bristol : IOP Publ., 2018) Fuss, Sabine; Lamb, William F.; Callaghan, Max W.; Hilaire, Jérôme; Creutzig, Felix; Amann, Thorben; Beringer, Tim; de Oliveira Garcia, Wagner; Hartmann, Jens; Khanna, Tarun; Luderer, Gunnar; Nemet, Gregory F.; Rogelj, Joeri; Smith, Pete; Vicente Vicente, José Luis; Wilcox, Jennifer; del Mar Zamora Dominguez, Maria; Minx, Jan C.
    The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 °C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors' assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mitigation strategy. Based on a systematic review of the literature, our best estimates for sustainable global NET potentials in 2050 are 0.5–3.6 GtCO2 yr−1 for afforestation and reforestation, 0.5–5 GtCO2 yr−1 for BECCS, 0.5–2 GtCO2 yr−1 for biochar, 2–4 GtCO2 yr−1 for enhanced weathering, 0.5–5 GtCO2 yr−1 for DACCS, and up to 5 GtCO2 yr−1 for soil carbon sequestration. Costs vary widely across the technologies, as do their permanency and cumulative potentials beyond 2050. It is unlikely that a single NET will be able to sustainably meet the rates of carbon uptake described in integrated assessment pathways consistent with 1.5 °C of global warming.