Search Results

Now showing 1 - 3 of 3
  • Item
    CAMP: An instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
    (Katlenburg-Lindau : Copernicus, 2022) Pilz, Christian; Düsing, Sebastian; Wehner, Birgit; Müller, Thomas; Siebert, Holger; Voigtländer, Jens; Lonardi, Michael
    Airborne observations of vertical aerosol particle distributions are crucial for detailed process studies and model improvements. Tethered balloon systems represent a less expensive alternative to aircraft to probe shallow atmospheric boundary layers (ABLs). This study presents the newly developed cubic aerosol measurement platform (CAMP) for balloon-borne observations of aerosol particle microphysical properties. With an edge length of 35 cm and a weight of 9 kg, the cube is an environmentally robust instrument platform intended for measurements at low temperatures, with a particular focus on applications in cloudy Arctic ABLs. The aerosol instrumentation on board CAMP comprises two condensation particle counters with different lower detection limits, one optical particle size spectrometer, and a miniaturized absorption photometer. Comprehensive calibrations and characterizations of the instruments were performed in laboratory experiments. The first field study with a tethered balloon system took place at the Leibniz Institute for Tropospheric Research (TROPOS) station in Melpitz, Germany, in the winter of 2019. At ambient temperatures between-8 and 15 C, the platform was operated up to a 1.5 km height on 14 flights under both clear-sky and cloudy conditions. The continuous aerosol observations at the ground station served as a reference for evaluating the CAMP measurements. Exemplary profiles are discussed to elucidate the performance of the system and possible process studies. Based on the laboratory instrument characterizations and the observations during the field campaign, CAMP demonstrated the capability to provide comprehensive aerosol particle measurements in cold and cloudy ABLs.
  • Item
    Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events
    (Katlenburg-Lindau : Copernicus, 2018) Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George
    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 μm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.
  • Item
    Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling
    (Katlenburg-Lindau : Copernicus, 2020) Molleker, Sergej; Helleis, Frank; Klimach, Thomas; Appel, Oliver; Clemen, Hans-Christian; Dragoneas, Antonis; Gurk, Christian; Hünig, Andreas; Köllner, Franziska; Rubach, Florian; Schulz, Christiane; Schneider, Johannes; Borrmann, Stephan
    We present a novel and compact design of a constant-pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular, the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, in which efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hectopascals. The CPI device can also be used in condensation particle counters (CPCs), cloud condensation nucleus counters (CCNCs), and gas-phase sampling instruments across a wide range of altitudes and inlet pressures. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that acts as a critical orifice. The CPI control keeps air pressure and thereby mass flow rate (≈0.1 L min-1) upstream of an aerodynamic lens constant, deviating at most by only ±2 % from a preset value. In our setup, a pressure sensor downstream of the O-ring maintains control of the pinch mechanism via a feedback loop and setpoint conditions are reached within seconds. The device was implemented in a few instruments, which were successfully operated on different research aircraft covering a wide range of ambient pressures, from sea level up to about 55 hPa. Details of operation and the quality of aerosol particle transmission were evaluated by laboratory experiments and in-flight data with a single-particle mass spectrometer. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.