Search Results

Now showing 1 - 10 of 21
  • Item
    When optimization for governing human-environment tipping elements is neither sustainable nor safe
    (London : Nature Publishing Group, 2018) Barfuss, W.; Donges, J.F.; Lade, S.J.; Kurths, J.
    Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.
  • Item
    Impact of the precursor chemistry and process conditions on the cell-to-cell variability in 1T-1R based HfO2 RRAM devices
    (London : Nature Publishing Group, 2018) Grossi, A.; Perez, E.; Zambelli, C.; Olivo, P.; Miranda, E.; Roelofs, R.; Woodruff, J.; Raisanen, P.; Li, W.; Givens, M.; Costina, I.; Schubert, M.A.; Wenger, C.
    The Resistive RAM (RRAM) technology is currently in a level of maturity that calls for its integration into CMOS compatible memory arrays. This CMOS integration requires a perfect understanding of the cells performance and reliability in relation to the deposition processes used for their manufacturing. In this paper, the impact of the precursor chemistries and process conditions on the performance of HfO2 based memristive cells is studied. An extensive characterization of HfO2 based 1T1R cells, a comparison of the cell-to-cell variability, and reliability study is performed. The cells’ behaviors during forming, set, and reset operations are monitored in order to relate their features to conductive filament properties and process-induced variability of the switching parameters. The modeling of the high resistance state (HRS) is performed by applying the Quantum-Point Contact model to assess the link between the deposition condition and the precursor chemistry with the resulting physical cells characteristics.
  • Item
    Generation of crystal-structure transverse patterns via a self-frequency-doubling laser
    (London : Nature Publishing Group, 2013) Yu, H.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, J.; Petrov, V.
    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.
  • Item
    Two-thirds of global cropland area impacted by climate oscillations
    (London : Nature Publishing Group, 2018) Heino, M.; Puma, M.J.; Ward, P.J.; Gerten, D.; Heck, V.; Siebert, S.; Kummu, M.
    The El Niño Southern Oscillation (ENSO) peaked strongly during the boreal winter 2015-2016, leading to food insecurity in many parts of Africa, Asia and Latin America. Besides ENSO, the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) are known to impact crop yields worldwide. Here we assess for the first time in a unified framework the relationships between ENSO, IOD and NAO and simulated crop productivity at the sub-country scale. Our findings reveal that during 1961-2010, crop productivity is significantly influenced by at least one large-scale climate oscillation in two-thirds of global cropland area. Besides observing new possible links, especially for NAO in Africa and the Middle East, our analyses confirm several known relationships between crop productivity and these oscillations. Our results improve the understanding of climatological crop productivity drivers, which is essential for enhancing food security in many of the most vulnerable places on the planet.
  • Item
    Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance
    (London : Nature Publishing Group, 2019) Zhu, H.; Mao, J.; Li, Y.; Sun, J.; Wang, Y.; Zhu, Q.; Li, G.; Song, Q.; Zhou, J.; Fu, Y.; He, R.; Tong, T.; Liu, Z.; Ren, W.; You, L.; Wang, Z.; Luo, J.; Sotnikov, A.; Bao, J.; Nielsch, K.; Chen, G.; Singh, D.J.; Ren, Z.
    Discovery of thermoelectric materials has long been realized by the Edisonian trial and error approach. However, recent progress in theoretical calculations, including the ability to predict structures of unknown phases along with their thermodynamic stability and functional properties, has enabled the so-called inverse design approach. Compared to the traditional materials discovery, the inverse design approach has the potential to substantially reduce the experimental efforts needed to identify promising compounds with target functionalities. By adopting this approach, here we have discovered several unreported half-Heusler compounds. Among them, the p-type TaFeSb-based half-Heusler demonstrates a record high ZT of ~1.52 at 973 K. Additionally, an ultrahigh average ZT of ~0.93 between 300 and 973 K is achieved. Such an extraordinary thermoelectric performance is further verified by the heat-to-electricity conversion efficiency measurement and a high efficiency of ~11.4% is obtained. Our work demonstrates that the TaFeSb-based half-Heuslers are highly promising for thermoelectric power generation.
  • Item
    Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal
    (London : Nature Publishing Group, 2018) Seiro, S.; Jiao, L.; Kirchner, S.; Hartmann, S.; Friedemann, S.; Krellner, C.; Geibel, C.; Si, Q.; Steglich, F.; Wirth, S.
    Strong electron correlations can give rise to extraordinary properties of metals with renormalized Landau quasiparticles. Near a quantum critical point, these quasiparticles can be destroyed and non-Fermi liquid behavior ensues. YbRh2Si2 is a prototypical correlated metal exhibiting the formation of quasiparticle and Kondo lattice coherence, as well as quasiparticle destruction at a field-induced quantum critical point. Here we show how, upon lowering the temperature, Kondo lattice coherence develops at zero field and finally gives way to non-Fermi liquid electronic excitations. By measuring the single-particle excitations through scanning tunneling spectroscopy, we find the Kondo lattice peak displays a non-trivial temperature dependence with a strong increase around 3.3 K. At 0.3 K and with applied magnetic field, the width of this peak is minimized in the quantum critical regime. Our results demonstrate that the lattice Kondo correlations have to be sufficiently developed before quantum criticality can set in.
  • Item
    Correlating the ancient Maya and modern european calendars with high-precision AMS 14C dating
    (London : Nature Publishing Group, 2013) Kennett, D.J.; Hajdas, I.; Culleton, B.J.; Belmecheri, S.; Martin, S.; Neff, H.; Awe, J.; Graham, H.V.; Freeman, K.H.; Newsom, L.; Lentz, D.L.; Anselmetti, F.S.; Robinson, M.; Marwan, N.; Southon, J.; Hodell, D.A.; Haug, G.H.
    The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial.Wereport a series of high-resolution AMS14C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel betweenAD 658-696. This strongly supports the Goodman-Mart?nez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.
  • Item
    Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency
    (London : Nature Publishing Group, 2018) Zhu, H.; He, R.; Mao, J.; Zhu, Q.; Li, C.; Sun, J.; Ren, W.; Wang, Y.; Liu, Z.; Tang, Z.; Sotnikov, A.; Wang, Z.; Broido, D.; Singh, D.J.; Chen, G.; Nielsch, K.; Ren, Z.
    Thermoelectric materials are capable of converting waste heat into electricity. The dimensionless figure-of-merit (ZT), as the critical measure for the material's thermoelectric performance, plays a decisive role in the energy conversion efficiency. Half-Heusler materials, as one of the most promising candidates for thermoelectric power generation, have relatively low ZTs compared to other material systems. Here we report the discovery of p-type ZrCoBi-based half-Heuslers with a record-high ZT of ∼1.42 at 973 K and a high thermoelectric conversion efficiency of ∼9% at the temperature difference of ∼500 K. Such an outstanding thermoelectric performance originates from its unique band structure offering a high band degeneracy (N v) of 10 in conjunction with a low thermal conductivity benefiting from the low mean sound velocity (v m ∼2800 m s-1). Our work demonstrates that ZrCoBi-based half-Heuslers are promising candidates for high-temperature thermoelectric power generation.
  • Item
    Time-reversal symmetry breaking type-II Weyl state in YbMnBi2
    (London : Nature Publishing Group, 2019) Borisenko, S.; Evtushinsky, D.; Gibson, Q.; Yaresko, A.; Koepernik, K.; Kim, T.; Ali, M.; van den Brink, J.; Hoesch, M.; Fedorov, A.; Haubold, E.; Kushnirenko, Y.; Soldatov, I.; Schäfer, R.; Cava, R.J.
    Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.
  • Item
    Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method
    (London : Nature Publishing Group, 2019) Nečas, D.; Klapetek, P.; Neu, V.; Havlíček, M.; Puttock, R.; Kazakova, O.; Hu, X.; Zajíčková, L.
    Magnetic force microscopy has unsurpassed capabilities in analysis of nanoscale and microscale magnetic samples and devices. Similar to other Scanning Probe Microscopy techniques, quantitative analysis remains a challenge. Despite large theoretical and practical progress in this area, present methods are seldom used due to their complexity and lack of systematic understanding of related uncertainties and recommended best practice. Use of the Tip Transfer Function (TTF) is a key concept in making Magnetic Force Microscopy measurements quantitative. We present a numerical study of several aspects of TTF reconstruction using multilayer samples with perpendicular magnetisation. We address the choice of numerical approach, impact of non-periodicity and windowing, suitable conventions for data normalisation and units, criteria for choice of regularisation parameter and experimental effects observed in real measurements. We present a simple regularisation parameter selection method based on TTF width and verify this approach via numerical experiments. Examples of TTF estimation are shown on both 2D and 3D experimental datasets. We give recommendations on best practices for robust TTF estimation, including the choice of windowing function, measurement strategy and dealing with experimental error sources. A method for synthetic MFM data generation, suitable for large scale numerical experiments is also presented.