Search Results

Now showing 1 - 10 of 18
  • Item
    Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: A shared electromagnetic origin
    (London : Nature Publishing Group, 2017) Rudenko, Anton; Colombier, Jean-Philippe; Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn; Itina, Tatiana E.
    Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.
  • Item
    Advanced-Retarded Differential Equations in Quantum Photonic Systems
    (London : Nature Publishing Group, 2017) Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip.
  • Item
    Prospects of target nanostructuring for laser proton acceleration
    (London : Nature Publishing Group, 2017) Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
  • Item
    Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies
    (London : Nature Publishing Group, 2017) Zürch, M.; Jung, R.; Späth, C.; Tümmler, J.; Guggenmos, A.; Attwood, D.; Kleineberg, U.; Stiel, H.; Spielmann, C.
    Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
  • Item
    Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser
    (London : Nature Publishing Group, 2017) Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria
    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.
  • Item
    Population density gratings induced by few-cycle optical pulses in a resonant medium
    (London : Nature Publishing Group, 2017) Arkhipov, R.M.; Pakhomov, A.V.; Arkhipov, M.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N.
    Creation, erasing and ultrafast control of population density gratings using few-cycle optical pulses coherently interacting with resonant medium is discussed. In contrast to the commonly used schemes, here the pulses do not need to overlap in the medium, interaction between the pulses is mediated by excitation of polarization waves. We investigate the details of the dynamics arising in such ultrashort pulse scheme and develop an analytical theory demonstrating the importance of the phase memory effects in the dynamics.
  • Item
    Spatiooral coherence mapping of few-cycle vortex pulses
    (London : Nature Publishing Group, 2014) Grunwald, R.; Elsaesser, T.; Bock, M.
    Light carrying an orbital angular momentum (OAM) displays an optical phase front rotating in space and time and a vanishing intensity, a so-called vortex, in the center. Beyond continuous-wave vortex beams, optical pulses with a finite OAM are important for many areas of science and technology, ranging from the selective manipulation and excitation of matter to telecommunications. Generation of vortex pulses with a duration of few optical cycles requires new methods for characterising their coherence properties in space and time. Here we report a novel approach for flexibly shaping and characterising few-cycle vortex pulses of tunable topological charge with two sequentially arranged spatial light modulators. The reconfigurable optical arrangement combines interferometry, wavefront sensing, time-of-flight and nonlinear correlation techniques in a very compact setup, providing complete spatiooral coherence maps at minimum pulse distortions. Sub-7â €...fs pulses carrying different optical angular momenta are generated in single and multichannel geometries and characterised in comparison to zero-order Laguerre-Gaussian beams. To the best of our knowledge, this represents the shortest pulse durations reported for direct vortex shaping and detection with spatial light modulators. This access to space-time coupling effects with sub-femtosecond time resolution opens new prospects for tailored twisted light transients of extremely short duration.
  • Item
    Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate
    (London : Nature Publishing Group, 2020) Ouillé, Marie; Vernier, Aline; Böhle, Frederik; Bocoum, Maïmouna; Jullien, Aurélie; Lozano, Magali; Rousseau, Jean-Philippe; Cheng, Zhao; Gustas, Dominykas; Blumenstein, Andreas; Simon, Peter; Haessler, Stefan; Faure, Jérôme; Nagy, Tamas; Lopez-Martens, Rodrigo
    The development of ultra-intense and ultra-short light sources is currently a subject of intense research driven by the discovery of novel phenomena in the realm of relativistic optics, such as the production of ultrafast energetic particle and radiation beams for applications. It has been a long-standing challenge to unite two hitherto distinct classes of light sources: those achieving relativistic intensity and those with pulse durations approaching a single light cycle. While the former class traditionally involves large-scale amplification chains, the latter class places high demand on the spatiotemporal control of the electromagnetic laser field. Here, we present a light source producing waveform-controlled 1.5-cycle pulses with a 719 nm central wavelength that can be focused to relativistic intensity at a 1 kHz repetition rate based on nonlinear post-compression in a long hollow-core fiber. The unique capabilities of this source allow us to observe the first experimental indications of light waveform effects in laser wakefield acceleration of relativistic energy electrons. © 2020, The Author(s).
  • Item
    Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses
    (London : Nature Publishing Group, 2017) Seuthe, Thomas; Mermillod-Blondin, Alexandre; Grehn, Moritz; Bonse, Jörn; Wondraczek, Lothar; Eberstein, Markus
    Structural relaxation phenomena in binary and multicomponent lithium silicate glasses were studied upon irradiation with femtosecond (fs) laser pulses (800 nm central wavelength, 130 fs pulse duration) and subsequent thermal annealing experiments. Depending on the annealing temperature, micro-Raman spectroscopy analyses evidenced different relaxation behaviours, associated to bridging and non-bridging oxygen structures present in the glass network. The results indicate that the mobility of lithium ions is an important factor during the glass modification with fs-laser pulses. Quantitative phase contrast imaging (spatial light interference microscopy) revealed that these fs-laser induced structural modifications are closely related to local changes in the refractive index of the material. The results establish a promising strategy for tailoring fs-laser sensitivity of glasses through structural mobility.
  • Item
    Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers
    (London : Nature Publishing Group, 2014) Ma, J.; Xie, G.; Lv, P.; Gao, W.; Yuan, P.; Qian, L.; Griebner, U.; Petrov, V.; Yu, H.; Zhang, H.; Wang, J.
    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.