Search Results

Now showing 1 - 10 of 15
  • Item
    Polarization manipulation of surface acoustic waves by metallization patterns on a piezoelectric substrate
    (Melville, NY : AIP Publishing, 2020) Weser, R.; Darinskii, A.N.; Schmidt, H.
    Surface acoustic waves (SAWs) with large normal (vertical) surface displacement at the surface are commonly utilized in microfluidic actuators in order to provide the desired momentum transfer to the fluid. We present an alternative concept using a SAW with comparatively small vertical displacement. Such a SAW passes underneath the microfluidic vessel walls with minimum losses but it needs to be converted inside the vessel into surface vibrations with large vertical displacements. The principal operability of the above idea is illustrated by experimental and numerical studies of the polarization conversion of a leaky SAW on 64° rotated Y-cut of lithium niobate owing to the partial metallization of the substrate surface. In particular, it is found that vertical displacements on the metallized surface can be up to 3.5 times higher as compared to their values on the free surface. Results of computations agree reasonably well with measurements carried out with a laser Doppler vibrometer and allow the clarification of some specific features of this polarization conversion by means of spatial frequency analysis. © 2020 Author(s).
  • Item
    Quantifying ligand-cell interactions and determination of the surface concentrations of ligands on hydrogel films: The measurement challenge
    (Melville, NY : AIP Publishing, 2015) Beer, Meike V.; Hahn, Kathrin; Diederichs, Sylvia; Fabry, Marlies; Singh, Smriti; Spencer, Steve J.; Salber, Jochen; Möller, Martin; Shard, Alexander G.; Groll, Jürgen
    Hydrogels are extensively studied for biomaterials application as they provide water swollen noninteracting matrices in which specific binding motifs and enzyme-sensitive degradation sites can be incorporated to tailor cell adhesion, proliferation, and migration. Hydrogels also serve as excellent basis for surface modification of biomaterials where interfacial characteristics are decisive for implant success or failure. However, the three-dimensional nature of hydrogels makes it hard to distinguish between the bioactive ligand density at the hydrogel-cell interface that is able to interact with cells and the ligands that are immobilized inside the hydrogel and not accessible for cells. Here, the authors compare x-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), enzyme linked immunosorbent assay (ELISA), and the correlation with quantitative cell adhesion using primary human dermal fibroblasts (HDF) to gain insight into ligand distribution. The authors show that although XPS provides the most useful quantitative analysis, it lacks the sensitivity to measure biologically meaningful concentrations of ligands. However, ToF-SIMS is able to access this range provided that there are clearly distinguishable secondary ions and a calibration method is found. Detection by ELISA appears to be sensitive to the ligand density on the surface that is necessary to mediate cell adhesion, but the upper limit of detection coincides closely with the minimal ligand spacing required to support cell proliferation. Radioactive measurements and ELISAs were performed on amine reactive well plates as true 2D surfaces to estimate the ligand density necessary to allow cell adhesion onto hydrogel films. Optimal ligand spacing for HDF adhesion and proliferation on ultrathin hydrogel films was determined as 6.5 ± 1.5 nm.
  • Item
    Probing carbonyl-water hydrogen-bond interactions in thin polyoxazoline brushes
    (Melville, NY : AIP Publishing, 2016) Kroning, Annika; Furchner, Andreas; Adam, Stefan; Uhlmann, Petra; Hinrichs, Karsten
    Temperature-responsive oxazoline-based polymer brushes have gained increased attention as biocompatible surfaces. In aqueous environment, they can be tuned between hydrophilic and hydrophobic behavior triggered by a temperature stimulus. This transition is connected with changes in molecule–solvent interactions and results in a switching of the brushes between swollen and collapsed states. This work studies the temperature-dependent interactions between poly(2-oxazoline) brushes and water. In detail, thermoresponsive poly(2-cyclopropyl-2-oxazoline), nonresponsive hydrophilic poly(2-methyl-2-oxazoline), as well as a copolymer of the two were investigated with in situ infrared ellipsometry. Focus was put on interactions of the brushes' carbonyl groups with water molecules. Different polymer–water interactions could be observed and assigned to hydrogen bonding between C=O groups and water molecules. The switching behavior of the brushes in the range of 20–45 °C was identified by frequency shifts and intensity changes of the amide I band.
  • Item
    Epitaxial stannate pyrochlore thin films: Limitations of cation stoichiometry and electron doping
    (Melville, NY : AIP Publishing, 2021) Hensling, Felix V. E.; Dahliah, Diana; Dulal, Prabin; Singleton, Patrick; Sun, Jiaxin; Schubert, Jürgen; Paik, Hanjong; Subedi, Indra; Subedi, Biwas; Rignanese, Gian-Marco; Podraza, Nikolas J.; Hautier, Geoffroy; Schlom, Darrell G.
    We have studied the growth of epitaxial films of stannate pyrochlores with a general formula A2Sn2O7 (A = La and Y) and find that it is possible to incorporate ∼25% excess of the A-site constituent; in contrast, any tin excess is expelled. We unravel the defect chemistry, allowing for the incorporation of excess A-site species and the mechanism behind the tin expulsion. An A-site surplus is manifested by a shift in the film diffraction peaks, and the expulsion of tin is apparent from the surface morphology of the film. In an attempt to increase La2Sn2O7 conductivity through n-type doping, substantial quantities of tin have been substituted by antimony while maintaining good film quality. The sample remained insulating as explained by first-principles computations, showing that both the oxygen vacancy and antimony-on-tin substitutional defects are deep. Similar conclusions are drawn on Y2Sn2O7. An alternative n-type dopant, fluorine on oxygen, is shallow according to computations and more likely to lead to electrical conductivity. The bandgaps of stoichiometric La2Sn2O7 and Y2Sn2O7 films were determined by spectroscopic ellipsometry to be 4.2 eV and 4.48 eV, respectively. © 2021 Author(s).
  • Item
    Axial dispersion-managed liquid-core fibers: A platform for tailored higher-order mode supercontinuum generation
    (Melville, NY : AIP Publishing, 2022) Qi, Xue; Scheibinger, Ramona; Nold, Johannes; Junaid, Saher; Chemnitz, Mario; Schmidt, Markus A.
    Soliton-based supercontinuum generation is a powerful approach for generating light with the desired properties, although limited dispersion tuning capabilities remain a key challenge. Here, we introduce liquid-core fibers (LCFs) with longitudinally controlled dispersion of a higher-order mode, achieved by axial modulation of the liquid core diameter. This approach provides a versatile photonic platform with unique dispersion control capabilities that are particularly relevant to ultrafast, non-linear frequency conversion. Our tuning concept uses LCFs with anomalous dispersion at telecommunication wavelengths (TE01-mode) and relies on the strong dependence of dispersion on the core diameter. Non-monotonic, complex dispersion profiles feature multiple dispersive waves formation when launching ultrashort pulses. For example, this effect has been used to fill spectral gaps in fibers with linearly decreasing core diameter in order to spectrally smooth the output spectra. Our results highlight the potential of LCFs for controlling dispersion, particularly along the fiber axis, thus yielding novel dispersion landscapes that can reveal unexplored nonlinear dynamics and generate tailored broadband spectra.
  • Item
    Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy
    (Melville, NY : AIP Publishing, 2017) Heiner, Zsuzsanna; Petrov, Valentin; Mero, Mark
    We present a high-efficiency optical parametric source for broadband vibrational sum-frequency generation (BB-VSFG) for the chemically important mid-infrared spectral range at 2800-3600 cm-1 to study hydrogen bonding interactions affecting the structural organization of biomolecules at water interfaces. The source consists of a supercontinuum-seeded, dual-beam optical parametric amplifier with two broadband infrared output beams and a chirped sum-frequency mixing stage providing narrowband visible pulses with adjustable bandwidth. Utilizing a pulse energy of only 60 μJ from a turn-key, 1.03-μm pump laser operating at a repetition rate of 100 kHz, the source delivers 6-cycle infrared pulses at 1.5 and 3.2 μm with pulse energies of 4.6 and 1.8 μJ, respectively, and narrowband pulses at 0.515 μm with a pulse energy of 5.0 μJ. The 3.2-μm pulses are passively carrier envelope phase stabilized with fluctuations at the 180-mrad level over a 10-s time period. The 1.5-μm beamline can be exploited to deliver pump pulses for time-resolved studies after suitable frequency up-conversion. The high efficiency, stability, and two orders of magnitude higher repetition rate of the source compared to typically employed systems offer great potential for providing a boost in sensitivity in BB-VSFG experiments at a reduced cost.
  • Item
    Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots
    (Melville, NY : AIP Publishing, 2020) Pregnolato, T.; Chu, X.-L.; Schröder, T.; Schott, R.; Wieck, A.D.; Ludwig, A.; Lodahl, P.; Rotenberg, N.
    The capability to embed self-assembled quantum dots (QDs) at predefined positions in nanophotonic structures is key to the development of complex quantum-photonic architectures. Here, we demonstrate that QDs can be deterministically positioned in nanophotonic waveguides by pre-locating QDs relative to a global reference frame using micro-photoluminescence (μPL) spectroscopy. After nanofabrication, μPL images reveal misalignments between the central axis of the waveguide and the embedded QD of only (9 ± 46) nm and (1 ± 33) nm for QDs embedded in undoped and doped membranes, respectively. A priori knowledge of the QD positions allows us to study the spectral changes introduced by nanofabrication. We record average spectral shifts ranging from 0.1 nm to 1.1 nm, indicating that the fabrication-induced shifts can generally be compensated by electrical or thermal tuning of the QDs. Finally, we quantify the effects of the nanofabrication on the polarizability, the permanent dipole moment, and the emission frequency at vanishing electric field of different QD charge states, finding that these changes are constant down to QD-surface separations of only 70 nm. Consequently, our approach deterministically integrates QDs into nanophotonic waveguides whose light-fields contain nanoscale structure and whose group index varies at the nanometer level. © 2020 Author(s).
  • Item
    Observing distant objects with a multimode fiber-based holographic endoscope
    (Melville, NY : AIP Publishing, 2021) Leite, Ivo T.; Turtaev, Sergey; Boonzajer Flaes, Dirk E.; Čižmár, Tomáš
    Holographic wavefront manipulation enables converting hair-thin multimode optical fibers into minimally invasive lensless imaging instruments conveying much higher information densities than conventional endoscopes. Their most prominent applications focus on accessing delicate environments, including deep brain compartments, and recording micrometer-scale resolution images of structures in close proximity to the distal end of the instrument. Here, we introduce an alternative "far-field"endoscope capable of imaging macroscopic objects across a large depth of field. The endoscope shaft with dimensions of 0.2 × 0.4 mm2 consists of two parallel optical fibers: one for illumination and the other for signal collection. The system is optimized for speed, power efficiency, and signal quality, taking into account specific features of light transport through step-index multimode fibers. The characteristics of imaging quality are studied at distances between 20 mm and 400 mm. As a proof-of-concept, we provide imaging inside the cavities of a sweet pepper commonly used as a phantom for biomedically relevant conditions. Furthermore, we test the performance on a functioning mechanical clock, thus verifying its applicability in dynamically changing environments. With the performance reaching the standard definition of video endoscopes, this work paves the way toward the exploitation of minimally invasive holographic micro-endoscopes in clinical and diagnostics applications. © 2021 Author(s).
  • Item
    Observing mode-dependent wavelength-to-time mapping in few-mode fibers using a single-photon detector array
    (Melville, NY : AIP Publishing, 2020) Chandrasekharan, Harikumar K.; Ehrlich, Katjana; Tanner, Michael G.; Haynes, Dionne M.; Mukherjee, Sebabrata; Birks, Tim A.; Thomson, Robert R.
    Wavelength-to-time mapping (WTM)—stretching ultrashort optical pulses in a dispersive medium such that the instantaneous frequency becomes time-dependent—is usually performed using a single-mode fiber. In a number of applications, such as time-stretch imaging (TSI), the use of this single-mode fiber during WTM limits the achievable sampling rate and the imaging quality. Multimode fiber based WTM is a potential route to overcome this challenge and project a more diverse range of light patterns. Here, we demonstrate the use of a twodimensional single-photon avalanche diode (SPAD) array to image, in a time-correlated single-photon counting (TCSPC) manner, the time- and wavelength-dependent arrival of different spatial modes in a few-mode fiber. We then use a TCSPC spectrometer with a onedimensional SPAD array to record and calibrate the wavelength-dependent and mode-dependent WTM processes. The direct measurement of the WTM of the spatial modes opens a convenient route to estimate group velocity dispersion, differential mode delay, and the effective refractive index of different spatial modes. This is applicable to TSI and ultrafast optical imaging, as well as broader areas such as telecommunications.
  • Item
    Low-loss fiber-to-chip couplers with ultrawide optical bandwidth
    (Melville, NY : AIP Publishing, 2019) Gehring, H.; Blaicher, M.; Hartmann, W.; Varytis, P.; Busch, K.; Wegener, M.; Pernice, W.H.P.
    Providing efficient access from optical fibers to on-chip photonic systems is a key challenge for integrated optics. In general, current solutions allow either narrowband out-of-plane-coupling to a large number of devices or broadband edge-coupling to a limited number of devices. Here we present a hybrid approach using 3D direct laser writing, merging the advantages of both concepts and enabling broadband and low-loss coupling to waveguide devices from the top. In the telecom wavelength regime, we demonstrate a coupling loss of less than -1.8 dB between 1480 nm and 1620 nm. In the wavelength range between 730 nm and 1700 nm, we achieve coupling efficiency well above -8 dB which is sufficient for a range of broadband applications spanning more than an octave. The 3D couplers allow relaxed mechanical alignment with respect to optical fibers, with -1 dB alignment tolerance of about 5 μm in x- and y-directions and -1 dB alignment tolerance in the z-direction of 34 μm. Using automatized alignment, many such couplers can be connected to integrated photonic circuits for rapid prototyping and hybrid integration. © 2019 Author(s).