Search Results

Now showing 1 - 2 of 2
  • Item
    Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests
    (Oxford [u.a.] : Blackwell Science, 2017) Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D.; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R.; Quegan, Shaun; Rademacher, Tim T.; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno
    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models.
  • Item
    Significant increase in natural disturbance impacts on European forests since 1950
    (Oxford [u.a.] : Blackwell Science, 2022) Patacca, Marco; Lindner, Marcus; Lucas‐Borja, Manuel Esteban; Cordonnier, Thomas; Fidej, Gal; Gardiner, Barry; Hauf, Ylva; Jasinevičius, Gediminas; Labonne, Sophie; Linkevičius, Edgaras; Mahnken, Mats; Milanovic, Slobodan; Nabuurs, Gert‐Jan; Nagel, Thomas A.; Nikinmaa, Laura; Panyatov, Momchil; Bercak, Roman; Seidl, Rupert; Ostrogović Sever, Masa Zorana; Socha, Jaroslaw; Thom, Dominik; Vuletic, Dijana; Zudin, Sergey; Schelhaas, Mart‐Jan
    Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3/year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.