Search Results

Now showing 1 - 4 of 4
  • Item
    Digitally Fabricated and Naturally Augmented In Vitro Tissues
    (Weinheim : Wiley-VCH, 2020) Duarte Campos, Daniela F.; De Laporte, Laura
    Human in vitro tissues are extracorporeal 3D cultures of human cells embedded in biomaterials, commonly hydrogels, which recapitulate the heterogeneous, multiscale, and architectural environment of the human body. Contemporary strategies used in 3D tissue and organ engineering integrate the use of automated digital manufacturing methods, such as 3D printing, bioprinting, and biofabrication. Human tissues and organs, and their intra- and interphysiological interplay, are particularly intricate. For this reason, attentiveness is rising to intersect materials science, medicine, and biology with arts and informatics. This report presents advances in computational modeling of bioink polymerization and its compatibility with bioprinting, the use of digital design and fabrication in the development of fluidic culture devices, and the employment of generative algorithms for modeling the natural and biological augmentation of in vitro tissues. As a future direction, the use of serially linked in vitro tissues as human body-mimicking systems and their application in drug pharmacokinetics and metabolism, disease modeling, and diagnostics are discussed. © 2020 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Impact of Reactive Amphiphilic Copolymers on Mechanical Properties and Cell Responses of Fibrin-Based Hydrogels
    (Weinheim : Wiley-VCH, 2020) Al Enezy-Ulbrich, Miriam Aischa; Malyaran, Hanna; de Lange, Robert Dirk; Labude, Norina; Plum, René; Rütten, Stephan; Terefenko, Nicole; Wein, Svenja; Neuss, Sabine; Pich, Andrij
    Mechanical properties of hydrogels can be modified by the variation of structure and concentration of reactive building blocks. One promising biological source for the synthesis of biocompatible hydrogels is fibrinogen. Fibrinogen is a glycoprotein in blood, which can be transformed enzymatically to fibrin playing an important role in wound healing and clot formation. In the present work, it is demonstrated that hybrid hydrogels with their improved mechanical properties, tunable internal structure, and enhanced resistance to degradation can be synthesized by a combination of fibrinogen and reactive amphiphilic copolymers. Water-soluble amphiphilic copolymers with tunable molecular weight and controlled amounts of reactive epoxy side groups are used as reactive crosslinkers to reinforce fibrin hydrogels. In the present work, copolymers that can influence the mechanical properties of fibrin-based hydrogels are used. The reactive copolymers increase the storage modulus of the hydrogels from 600 Pa to 30 kPa. The thickness of fibrin fibers is regulated by the copolymer concentration. It could be demonstrated that the fibrin-based hydrogels are biocompatible and support cell proliferation. Their degradation rate is considerably slower than that of native fibrin gels. In conclusion, fibrin-based hydrogels with tunable elasticity and fiber thickness useful to direct cell responses like proliferation and differentiation are produced. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Pros and Cons : Supramolecular or Macromolecular : What Is Best for Functional Hydrogels with Advanced Properties?
    (Weinheim : Wiley-VCH, 2020) Eelkema, Rienk; Pich, Andrij
    Hydrogels are fascinating soft materials with unique properties. Many biological systems are based on hydrogel-like structures, underlining their versatility and relevance. The properties of hydrogels strongly depend on the structure of the building blocks they are composed of, as well as the nature of interactions between them in the network structure. Herein, gel networks made by supramolecular interactions are compared to covalent macromolecular networks, drawing conclusions about their performance and application as responsive materials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    In-Gel Direct Laser Writing for 3D-Designed Hydrogel Composites That Undergo Complex Self-Shaping
    (Weinheim : Wiley-VCH, 2017) Nishiguchi, Akihiro; Mourran, Ahmed; Zhang, Hang; Möller, Martin
    Self-shaping and actuating materials inspired by biological system have enormous potential for biosensor, microrobotics, and optics. However, the control of 3D-complex microactuation is still challenging due to the difficulty in design of nonuniform internal stress of micro/nanostructures. Here, we develop in-gel direct laser writing (in-gel DLW) procedure offering a high resolution inscription whereby the two materials, resin and hydrogel, are interpenetrated on a scale smaller than the wavelength of the light. The 3D position and mechanical properties of the inscribed structures could be tailored to a resolution better than 100 nm over a wide density range. These provide an unparalleled means of inscribing a freely suspended microstructures of a second material like a skeleton into the hydrogel body and also to direct isotropic volume changes to bending and distortion motions. In the combination with a thermosensitive hydrogel rather small temperature variations could actuate large amplitude motions. This generates complex modes of motion through the rational engineering of the stresses present in the multicomponent material. More sophisticated folding design would realize a multiple, programmable actuation of soft materials. This method inspired by biological system may offer the possibility for functional soft materials capable of biomimetic actuation and photonic crystal application.