Search Results

Now showing 1 - 10 of 21
  • Item
    Improving AlN Crystal Quality and Strain Management on Nanopatterned Sapphire Substrates by High-Temperature Annealing for UVC Light-Emitting Diodes
    (Weinheim : Wiley-VCH, 2020) Hagedorn, Sylvia; Walde, Sebastian; Susilo, Norman; Netzel, Carsten; Tillner, Nadine; Unger, Ralph-Stephan; Manley, Phillip; Ziffer, Eviathar; Wernicke, Tim; Becker, Christiane; Lugauer, Hans-Jürgen; Kneissl, Michael; Weyers, Markus
    Herein, AlN growth by metalorganic vapor-phase epitaxy on hole-type nanopatterned sapphire substrates is investigated. Cracking occurs for an unexpectedly thin-layer thickness, which is associated to altered nucleation conditions caused by the sapphire pattern. To overcome the obstacle of cracking and at the same time to decrease the threading dislocation density by an order of magnitude, high-temperature annealing (HTA) of a 300 nm-thick AlN starting layer is successfully introduced. By this method, 800 nm-thick, fully coalesced and crack-free AlN is grown on 2 in. nanopatterned sapphire wafers. The usability of such templates as basis for UVC light-emitting diodes (LEDs) is furthermore proved by subsequent growth of an UVC-LED heterostructure with single peak emission at 265 nm. Prerequisites for the enhancement of the light extraction efficiency by hole-type nanopatterned sapphire substrates are discussed. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Impact of the capture time on the series resistance of quantum-well diode lasers
    (Bristol : IOP Publ., 2020) Boni, A.; Wünsche, H.J.; Wenzel, H.; Crump, P.
    Electrons and holes injected into a semiconductor heterostructure containing quantum wells are captured with a finite time. We show theoretically that this very fact can cause a considerable excess contribution to the series resistivity and this is one of the main limiting factors to higher efficiency for GaAs based high-power lasers. The theory combines a standard microscopic-based model for the capture-escape processes in the quantum well with a drift-diffusion description of current flow outside the quantum well. Simulations of five GaAs-based devices differing in their Al-content reveal the root-cause of the unexpected and until now unexplained increase of the series resistance with decreasing heat sink temperature measured recently. The finite capture time results in resistances in excess of the bulk layer resistances (decreasing with increasing temperature) from 1 mΩ up to 30 mΩ in good agreement with the experiment. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Passive Detection and Imaging of Human Body Radiation Using an Uncooled Field-Effect Transistor-Based THz Detector
    (Basel : MDPI, 2020) Čibiraitė-Lukenskienė, Dovilė; Ikamas, Kęstutis; Lisauskas, Tautvydas; Krozer, Viktor; Roskos, Hartmut G.; Lisauskas, Alvydas
    This work presents, to our knowledge, the first completely passive imaging with human-body-emitted radiation in the lower THz frequency range using a broadband uncooled detector. The sensor consists of a Si CMOS field-effect transistor with an integrated log-spiral THz antenna. This THz sensor was measured to exhibit a rather flat responsivity over the 0.1–1.5-THz frequency range, with values√ of the optical responsivity and noise-equivalent power of around 40 mA/W and 42 pW/ Hz, respectively. These values are in good agreement with simulations which suggest an even broader flat responsivity range exceeding 2.0 THz. The successful imaging demonstrates the impressive thermal sensitivity which can be achieved with such a sensor. Recording of a 2.3 × 7.5-cm2-sized image of the fingers of a hand with a pixel size of 1 mm2 at a scanning speed of 1 mm/s leads to a signal-to-noise ratio of 2 and a noise-equivalent temperature difference of 4.4 K. This approach shows a new sensing approach with field-effect transistors as THz detectors which are usually used for active THz detection. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Generalization of coupled S-parameter calculation to compute beam impedances in particle accelerators
    (College Park, MD : American Physical Society, 2020) Flisgen, Thomas; Gjonaj, Erion; Glock, Hans-Walter; Tsakanian, Andranik
    In this article, a decomposition approach for the computation of beam coupling impedances is proposed. This approach can account for the mutual electromagnetic coupling in long accelerator structures consisting of several consecutive segments. The method is based on the description of the individual segments using a multimodal network matrix formulation in which the charged particle beam is considered as an additional port. Then, the generalized multimodal network matrices of all segments are combined to a multimodal network matrix of the complete structure. The beam coupling impedance as well as the scattering parameters of the full structure are recovered as particular matrix elements in this multimodal network matrix. The new method generalizes Coupled S-Parameter Calculation (CSC) introduced in earlier work such that charged particle beams are considered. Consequently, the introduced scheme is referred to as CSC. Application examples for realistic accelerator components such as the simulation of a full TESLA 1.3 GHz-cavity of the European XFEL are provided. These simulations demonstrate the high accuracy and numerical performance of the proposed method.
  • Item
    Continuous Wave THz System Based on an Electrically Tunable Monolithic Dual Wavelength Y-Branch DBR Diode Laser
    (New York, NY : Springer, 2020) Gwaro, Jared O.; Brenner, Carsten; Theurer, L.S.; Maiwald, M.; Sumpf, Bernd; Hofmann, Martin R.
    We analyse the use of a tunable dual wavelength Y-branch DBR laser diode for THz applications. The laser generates electrically tunable THz difference frequencies in the range between 100 and 300 GHz. The optical beats are tuned via current injection into a micro-resistor heater integrated on top of one of the distributed Bragg reflector (DBR) section of the diode. The laser is integrated in a homodyne THz system employing fiber coupled ion-implanted LT-GaAs log spiral antennas. The applicability of the developed system in THz spectroscopy is demonstrated by evaluating the spectral resonances of a THz filter as well as in THz metrology in thickness determination of a polyethylene sample.
  • Item
    Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope
    (Bristol : IOP Publ., 2020) Trager-Cowan, C.; Alasmari, A.; Avis, W.; Bruckbauer, J.; Edwards, P.R.; Ferenczi, G.; Hourahine, B.; Kotzai, A.; Kraeusel, S.; Kusch, G.; Martin, R.W.; McDermott, R.; Naresh-Kumar, G.; Nouf-Allehiani, M.; Pascal, E.; Thomson, D.; Vespucci, S.; Smith, M.D.; Parbrook, P.J.; Enslin, J.; Mehnke, F.; Kuhn, C.; Wernicke, T.; Kneissl, M.; Hagedorn, S.; Knauer, A.; Walde, S.; Weyers, M.; Coulon, P.-M.; Shields, P.A.; Bai, J.; Gong, Y.; Jiu, L.; Zhang, Y.; Smith, R.M.; Wang, T.; Winkelmann, A.
    The scanning electron microscopy techniques of electron backscatter diffraction (EBSD), electron channelling contrast imaging (ECCI) and cathodoluminescence (CL) hyperspectral imaging provide complementary information on the structural and luminescence properties of materials rapidly and non-destructively, with a spatial resolution of tens of nanometres. EBSD provides crystal orientation, crystal phase and strain analysis, whilst ECCI is used to determine the planar distribution of extended defects over a large area of a given sample. CL reveals the influence of crystal structure, composition and strain on intrinsic luminescence and/or reveals defect-related luminescence. Dark features are also observed in CL images where carrier recombination at defects is non-radiative. The combination of these techniques is a powerful approach to clarifying the role of crystallography and extended defects on a material's light emission properties. Here we describe the EBSD, ECCI and CL techniques and illustrate their use for investigating the structural and light emitting properties of UV-emitting nitride semiconductor structures. We discuss our investigations of the type, density and distribution of defects in GaN, AlN and AlGaN thin films and also discuss the determination of the polarity of GaN nanowires. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Improved Efficiency of Ultraviolet B Light-Emitting Diodes with Optimized p-Side
    (Weinheim : Wiley-VCH, 2020) Kolbe, Tim; Knauer, Arne; Rass, Jens; Cho, Hyun Kyong; Mogilatenko, Anna; Hagedorn, Sylvia; Lobo Ploch, Neysha; Einfeldt, Sven; Weyers, Markus
    The effects of design and thicknesses of different optically transparent p-current spreading layers [short-period superlattice, superlattice (SL), and bulk p- (Formula presented.)] as well as the type and thickness of the p-GaN cap layer on the electrical and optical characteristics of 310 nm ultraviolet light-emitting diodes (LEDs) are investigated. Scanning transmission electron microscopy measurements display self-organized composition variations in the nonpseudomorphically grown SLs, reducing the effect of increased hole injection efficiency of a SL. In addition, the effect leads to an increased operation voltage. In contrast, the bulk p-AlGaN layer has a uniform composition and the corresponding LEDs show only a slightly lower output power along with a lower operating voltage. If the thickness of the p-AlGaN bulk layer in the LED is reduced from 150 nm to 50 nm, the output power increases and the operating voltage decreases. Finally, LEDs with a nonuniform (Formula presented.) -GaN cap layer from a 3D island-like growth mode feature the highest output power and operating voltage. In contrast, the output power and operating voltage of LEDs with a smooth and closed cap depend on the thickness of (Formula presented.) -GaN. The highest output power and lowest operating voltage are achieved for LEDs with the thinnest (Formula presented.) -GaN cap. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Theoretical investigation of a miniature microwave driven plasma jet
    (Bristol : IOP Publ., 2020) Klute, Michael; Porteanu, Horia-Eugen; Stefanovic, Ilija; Heinrich, Wolfgang; Awakowicz, Peter; Brinkmann, Ralf Peter
    Radio frequency driven plasma jets are compact plasma sources which are used in many advanced fields such as surface engineering or biomedicine. The MMWICP (miniature micro wave ICP) is a particular variant of that device class. Unlike other plasma jets which employ capacitive coupling, the MMWICP uses the induction principle. The jet is integrated into a miniature cavity structure which realizes an LC-resonator with a high quality factor. When excited at its resonance frequency, the resonator develops a high internal current which—transferred to the plasma via induction—provides an efficient source of RF power. This work presents a theoretical model of the MMWICP. The possible operation points of the device are analyzed. Two different regimes can be identified, the capacitive E-mode with a plasma density of ne ≈ 5 × 1017 m−3, and the inductive H-mode with densities of ne ⩾ 1019 m−3. The E to H transition shows a pronounced hysteresis behavior.
  • Item
    Low-index quantum-barrier single-pass tapered semiconductor optical amplifiers for efficient coherent beam combining
    (Bristol : IOP Publ., 2020) Albrodt, P.; Niemeyer, M.; Elattar, M.; Hamperl, J.; Blume, G.; Ginolas, A.; Fricke, J.; Maaßdorf, A.; Georges, P.; Lucas-Leclin, G.; Paschke, K.; Crump, P.
    The requirements for coherent combination of high power GaAs-based single-pass tapered amplifiers are studied. Changes to the epitaxial layer structure are shown to bring higher beam quality and hence improved combining efficiency for one fixed device geometry. Specifically, structures with large vertical near field and low wave-guiding from the active region show 10% higher beam quality and coherent combining efficiency than reference devices. As a result, coherent combining efficiency is shown to be limited by beam quality, being directly proportional to the power content in the central lobe across a wide range of devices with different construction. In contrast, changes to the in-plane structure did not improve beam quality or combining efficiency. Although poor beam quality does correlate with increased optical intensities near the input aperture, locating monolithically-integrated absorption regions in these areas did not lead to any performance improvement. However, large area devices with subsequently improved cooling do achieve higher output powers. Phase noise can limit coherent combining, but this is shown to be small and independent of device design. Overall, tapered amplifiers are well suited for high power coherent combining applications. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    High-brightness broad-area diode lasers with enhanced self-aligned lateral structure
    (Bristol : IOP Publ., 2020) Elatta, M.; Brox, O.; Della Casa, P.; Maaßdorf, A.; Martin, D.; Wenzel, H.; Knigge, A.; Crump, P.
    Broad-area diode lasers with increased brightness and efficiency are presented, which are fabricated using an enhanced self-aligned lateral structure by means of a two-step epitaxial growth process with an intermediate etching step. In this structure, current-blocking layers in the device edges ensure current confinement under the central stripe, which can limit the detrimental effects of current spreading and lateral carrier accumulation on beam quality. It also minimizes losses at stripe edges, thus lowering the lasing threshold and increasing conversion efficiency, while maintaining high polarization purity. In the first realization of this structure, the current block is integrated within an extreme-triple-asymmetric epitaxial design with a thin p-doped side, meaning that the distance between the current block and the active zone can be minimized without added process complexity. Using this configuration, enhanced self-aligned structure devices with 90 µm stripe width and 4 mm resonator length show up to 20% lower threshold current, 21% narrower beam waist, and slightly higher (1.03 ) peak efficiency in comparison to reference devices with the same dimensions, while slope, divergence angle and polarization purity remain almost unchanged. These results correspond to an increase in brightness by up to 25%, and measurement results of devices with varying stripe widths follow the same trend. © 2020 The Author(s). Published by IOP Publishing Ltd.