Search Results

Now showing 1 - 4 of 4
  • Item
    High-temperature annealing of AlN films grown on 4H-SiC
    (New York, NY : American Inst. of Physics, 2020) Brunner, F.; Cancellara, L.; Hagedorn, S.; Albrecht, M.; Weyers, M.
    The effect of high-temperature annealing (HTA) at 1700 °C on AlN films grown on 4H-SiC substrates by metalorganic vapor phase epitaxy has been studied. It is shown that the structural quality of the AlN layers improves significantly after HTA similar to what has been demonstrated for AlN grown on sapphire. Dislocation densities reduce by one order of magnitude resulting in 8 × 108 cm-2 for a-type and 1 × 108 cm-2 for c-type dislocations. The high-temperature treatment removes pits from the surface by dissolving nanotubes and dislocations in the material. XRD measurements prove that the residual strain in AlN/4H-SiC is further relaxed after annealing. AlN films grown at higher temperature resulting in a lower as-grown defect density show only a marginal reduction in dislocation density after annealing. Secondary ion mass spectrometry investigation of impurity concentrations reveals an increase of Si after HTA probably due to in-diffusion from the SiC substrate. However, C concentration reduces considerably with HTA that points to an efficient carbon removal process (i.e., CO formation). © 2020 Author(s).
  • Item
    High temperature behavior of rual thin films on piezoelectric CTGS and LGS substrates
    (Basel : MDPI AG, 2020) Seifert, M.
    This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca3TaGa3Si2O14 (CTGS) and La3Ga5SiO14 (LGS) substrates. RuAl thin films with AlN or SiO2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In somefilms, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO2 barrier layer and up to 800 °C in air using a SiO2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.
  • Item
    Polarity Control in Group-III Nitrides beyond Pragmatism
    (College Park, Md. [u.a.] : American Physical Society, 2016) Mohn, Stefan; Stolyarchuk, Natalia; Markurt, Toni; Kirste, Ronny; Hoffmann, Marc P.; Collazo, Ramón; Courville, Aimeric; Di Felice, Rosa; Sitar, Zlatko; Vennéguès, Philippe; Albrecht, Martin
    Controlling the polarity of polar semiconductors on nonpolar substrates offers a wealth of device concepts in the form of heteropolar junctions. A key to realize such structures is an appropriate buffer-layer design that, in the past, has been developed by empiricism. GaN or ZnO on sapphire are prominent examples for that. Understanding the basic processes that mediate polarity, however, is still an unsolved problem. In this work, we study the structure of buffer layers for group-III nitrides on sapphire by transmission electron microscopy as an example. We show that it is the conversion of the sapphire surface into a rhombohedral aluminum-oxynitride layer that converts the initial N-polar surface to Al polarity. With the various AlxOyNz phases of the pseudobinary Al2O3-AlN system and their tolerance against intrinsic defects, typical for oxides, a smooth transition between the octahedrally coordinated Al in the sapphire and the tetrahedrally coordinated Al in AlN becomes feasible. Based on these results, we discuss the consequences for achieving either polarity and shed light on widely applied concepts in the field of group-III nitrides like nitridation and low-temperature buffer layers.
  • Item
    Electromechanical losses in carbon- and oxygen-containing bulk AlN single crystals
    (Amsterdam [u.a.] : Elsevier Science, 2019) Kogut, Iurii; Hartmann, Carsten; Gamov, Ivan; Suhak, Yuriy; Schulz, Michal; Schröder, Sebastian; Wollweber, Jürgen; Dittmar, Andrea; Irmscher, Klaus; Straubinger, Thomas; Bickermann, Matthias; Fritze, Holger
    Bulk single-crystalline aluminum nitride (AlN) is potentially a key component for low-loss high-temperature piezoelectric devices. However, the incorporation of electrically active impurities and defects during growth of AlN may adversely affect the performance of piezoelectric resonators especially at high temperatures. The electrical conductivity and electromechanical losses in bulk AlN single crystals are analyzed in the temperature range of 300–1200 K with respect to various contents of growth-related impurities in them. For AlN with [O]/[C] ≤ 1, an increase of electrical conductivity due to thermal activation of charge carriers in the temperature range of 850–1200 K has been observed and was determined to be a major contribution to electromechanical losses Q−1 rising up to maximum values of about 10−3 at 1200 K. As the oxygen content in AlN increased, the magnitude and the activation energy of high-temperature electrical conductivity increased. In oxygen-dominated AlN, two major thermally activated contributions to electromechanical losses were observed, namely, the anelastic relaxations of point defects at temperatures of 400–800 K and electrical conductivity at T > 800 K.